Solve Parametric Equations & Sketch Curve

  • Thread starter Thread starter baokhuyen
  • Start date Start date
  • Tags Tags
    Parametric
baokhuyen
Messages
9
Reaction score
0

Homework Statement


how can we eliminate the parameter of these functions:
x= t-2
y= t^2 +1
and sketch its curve

Homework Equations





The Attempt at a Solution



I can't find the relations between these 2 functions
 
Physics news on Phys.org
They are related through t.
 
But how can I eliminate t and make a function of x and y?
 
You could start by expressing t in terms of x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top