Taylor series and quadratic approximation

ookt2c
Messages
16
Reaction score
0

Homework Statement



use an appropriate local quadratic approximation to approximate the square root of 36.03

Homework Equations



not sure

The Attempt at a Solution



missed a day of class
 
Physics news on Phys.org
ookt2c said:

Homework Statement



use an appropriate local quadratic approximation to approximate the square root of 36.03

Homework Equations



not sure

The Attempt at a Solution



missed a day of class

You need to rwwrite
\sqrt{36+0.03}
in the form 6 \sqrt{1+\epsilon} and then expand this to order epsilon squared. I will let you figure out what the value of epsilon is.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top