Why lim(x-->0) cos(1/x) does not exist?

  • Thread starter Thread starter Miss.TOTO
  • Start date Start date
Miss.TOTO
Messages
1
Reaction score
0
Plz help!

Hi every body

I need some help with the limets

explain to me why lim(x-->0) cos(1/x) dose not exist?

Thx
 
Physics news on Phys.org


As x gets smaller and smaller, 1/x gets larger and larger. As 1/x gets larger and larger cos(1/x) just oscillates between +1 and -1. It doesn't approach any definite value.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top