SR is that nothing can move faster than light

nieuwenhuizen
Messages
2
Reaction score
0
Can somebody explain my error to me?

1. The base of SR is that nothing can move faster than light, c + v == c,
c - v = c

2 The next step many authors do is proving non-existance of simultaneity by
on observer at the platform versus one in a fast train. Flash from the
front, to be received at the tail, which is. they say "racing toward the
rays". Conclusion: Speed of approach is $c+v$ so that
$$ ( c + v ) \cdot \Delta t = L $$
Combination with a forward flash [ c - v ] leads to

$$ \frac{1}{c+v} + \frac{1}{1-v} = \frac{1}{c^2 - v^2 } $$

Why does this not contradict the base - statement 1 ?

Thanks to the one that does.

Nieuwenhuizen, J.K.
2009-02-16T15:36
 
Physics news on Phys.org


nieuwenhuizen said:
Can somebody explain my error to me?

1. The base of SR is that nothing can move faster than light, c + v == c,
c - v = c

2 The next step many authors do is proving non-existance of simultaneity by
on observer at the platform versus one in a fast train. Flash from the
front, to be received at the tail, which is. they say "racing toward the
rays". Conclusion: Speed of approach is $c+v$ so that
$$ ( c + v ) \cdot \Delta t = L $$
Combination with a forward flash [ c - v ] leads to

$$ \frac{1}{c+v} + \frac{1}{1-v} = \frac{1}{c^2 - v^2 } $$

Why does this not contradict the base - statement 1 ?

Thanks to the one that does.

Nieuwenhuizen, J.K.
2009-02-16T15:36
I am new to this and this is only to find how a reaction is handled. Sorry
 


nieuwenhuizen said:
Can somebody explain my error to me?

1. The base of SR is that nothing can move faster than light, c + v == c,
c - v = c

2 The next step many authors do is proving non-existance of simultaneity by
on observer at the platform versus one in a fast train. Flash from the
front, to be received at the tail, which is. they say "racing toward the
rays". Conclusion: Speed of approach is $c+v$ so that
$$ ( c + v ) \cdot \Delta t = L $$
Combination with a forward flash [ c - v ] leads to

$$ \frac{1}{c+v} + \frac{1}{1-v} = \frac{1}{c^2 - v^2 } $$

Why does this not contradict the base - statement 1 ?

Thanks to the one that does.

Nieuwenhuizen, J.K.
2009-02-16T15:36

No body can travel at greater than c, but there's no problem with the distance between two moving bodies closing at more than c. Two bodies approaching each other, each at nearly c in the observer's frame, will close distance at nearly 2c. Of course, in the frame of reference of one of the bodies, the distance is closing at nearly c, not nearly 2c, because all of the motion is in the other body, which cannot travel faster than c.
 


nieuwenhuizen said:
Can somebody explain my error to me?

1. The base of SR is that nothing can move faster than light, c + v == c,
c - v = c

2 The next step many authors do is proving non-existance of simultaneity by
on observer at the platform versus one in a fast train. Flash from the
front, to be received at the tail, which is. they say "racing toward the
rays". Conclusion: Speed of approach is $c+v$ so that
$$ ( c + v ) \cdot \Delta t = L $$
Combination with a forward flash [ c - v ] leads to

$$ \frac{1}{c+v} + \frac{1}{1-v} = \frac{1}{c^2 - v^2 } $$

Why does this not contradict the base - statement 1 ?

Thanks to the one that does.

Nieuwenhuizen, J.K.
2009-02-16T15:36
Consider please the following experiment performed in an inertial reference frame in the limits of Newton's mechanics. A source of light S located at the origin O emits successive light signals in the positive direction of the x-axis at constant time intervals t(e). The light signals
illuminate a target that moves with speed u in the positive direction of the x axis. When the first signal is emitted the target is located in front of the source. We impose the condition that the second emitted signal illuminates the target at a time t(r) i.e.
c[t(r)-t(e)]=ut(r).
where from
t(r)=ct(e)/[c-u]
Special relativity is not involved so far. Is c-u the result of a classical sddition law of velocities? That is the way in which the classical Doppler Effect formula is derived.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Back
Top