Area of a curve revolved about x-axis

  • Thread starter Thread starter nweis84
  • Start date Start date
  • Tags Tags
    Area Curve
nweis84
Messages
16
Reaction score
0
I'm pretty sure I'm setting this up right i just get stuck when i need to integrate it

the equation is y=e^x and rotated around the x-axis

I've attached the question

can someone help me thanks
 

Attachments

Physics news on Phys.org
You'll need 2 substitutions. The most obvious first substitution would be to let u=e^x. Follow that up with an appropriate trig substitution and you're home free.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top