Finding the power loss in a wire of varying cross-sectional area

  • #1
Glenn G
113
12
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: Finding the power loss in a wire of varying area - my problem is I don't know how to set up the integral

Hopefully you can see in the diagram below that the area of the wire varies linearly with length. I know the equations for resistance and power loss and I can express the resistance of a thin slice but need to integrate over the whole wire to get the full resistance - to find power then it is trivial. I've thought about this for a good while now but can't get it. Please help, this isn't homework (I'm very old and doing this for fun!)

1697391629568.png
 
Physics news on Phys.org
  • #2
I have no answer for you but as an EE I have to comment --- that is one WEIRD "wire" :smile:

Just FYI, chicken scratching for problem posts is frowned on here. Best to type it in and Latex is encouraged.
 
  • #3
Ok noted for future
 
  • #4
Glenn G said:
TL;DR Summary: Finding the power loss in a wire of varying area - my problem is I don't know how to set up the integral

Hopefully you can see in the diagram below that the area of the wire varies linearly with length. I know the equations for resistance and power loss and I can express the resistance of a thin slice but need to integrate over the whole wire to get the full resistance - to find power then it is trivial. I've thought about this for a good while now but can't get it. Please help, this isn't homework (I'm very old and doing this for fun!)

View attachment 333623
##r## is a function of ##x##, not ##dx##.
 
  • #5
Hi. Your description says 'the area of the wire varies linearly with length'. But the handwritten work says 'radius increases linearly with length'. The two statements are incompatible!

Also, 'length' is a constant for a given wire. I guess what you really mean is one of:
a) cross-sectional-area (CSA) varies linearly with distance along wire;
or
b) radius varies linearly with distance along wire.
 
  • #6
For a conical wire:

the radius ##r_1 = \sqrt{\frac{A_1}{\pi}}## and ##r_2 = \sqrt{\frac{A_2}{\pi}}## so ##r(x) = r_1 + x \frac{r_2-r_1}{L}## where ##x \equiv 0## at ##r_1## and ##x \equiv L## at ##r_2##

The resistance of a thin disk at ##x## is ##R(x) = \frac{\rho}{\pi r(x)^2}dx##

Then the total resistance is ##R = \int_0^L R(x) = \frac{\rho}{\pi} \int_0^L \frac{1}{r(x)^2} \, dx = \frac{\rho}{\pi} \int_0^L \frac{1}{(r_1 + x \frac{r_2-r_1}{L})^2} \, dx = \frac{\rho L}{\pi (r_1-r_2)} \left. \frac{1}{(r_1 + x\frac{r_2-r_1}{L})} \right|_0^L##

## R = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{(r_1 + L\frac{r_2-r_1}{L})} -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{r_2 } -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{r_1-r_2}{r_1 r_2 } ) = \frac{\rho L}{\pi r_1 r_2 } ##

## R = \frac{\rho L}{\pi \sqrt{\frac{A_1}{\pi}} \sqrt{\frac{A_2}{\pi}} } = \frac{\rho L}{\sqrt{A_1 A_2} } ##
 
Last edited:
  • Like
Likes vanhees71
  • #7
FWIW, in 'Real World', you would also have change of conductivity with position due temperature rise.
Think 'open', H-shaped fuses...
 
  • #8
DaveE said:
For a conical wire:

the radius ##r_1 = \sqrt{\frac{A_1}{\pi}}## and ##r_2 = \sqrt{\frac{A_2}{\pi}}## so ##r(x) = r_1 + x \frac{r_2-r_1}{L}## where ##x \equiv 0## at ##r_1## and ##x \equiv L## at ##r_2##

The resistance of a thin disk at ##x## is ##R(x) = \frac{\rho}{\pi r(x)^2}dx##

Then the total resistance is ##R = \int_0^L R(x) = \frac{\rho}{\pi} \int_0^L \frac{1}{r(x)^2} \, dx = \frac{\rho}{\pi} \int_0^L \frac{1}{(r_1 + x \frac{r_2-r_1}{L})^2} \, dx = \frac{\rho L}{\pi (r_1-r_2)} \left. \frac{1}{(r_1 + x\frac{r_2-r_1}{L})} \right|_0^L##

## R = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{(r_1 + L\frac{r_2-r_1}{L})} -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{1}{r_2 } -\frac{1}{r_1}) = \frac{\rho L}{\pi (r_1-r_2)} (\frac{r_1-r_2}{r_1 r_2 } ) = \frac{\rho L}{\pi r_1 r_2 } ##

## R = \frac{\rho L}{\pi \sqrt{\frac{A_1}{\pi}} \sqrt{\frac{A_2}{\pi}} } = \frac{\rho L}{\sqrt{A_1 A_2} } ##
That's fine if ##L>>r_2-r_1##. Otherwise there is the complication that current near the surface of the wire has further to travel than that near the core.
 
  • Like
Likes DaveE
  • #9
haruspex said:
That's fine if ##L>>r_2-r_1##. Otherwise there is the complication that current near the surface of the wire has further to travel than that near the core.
Yes, there's a subtle assumption that the "disks" are truly just in series; i.e. radial current flow isn't significant.
 

1. How do you calculate power loss in a wire of varying cross-sectional area?

To calculate power loss in a wire of varying cross-sectional area, you can use the formula: Power Loss = I^2 * R, where I is the current flowing through the wire and R is the resistance of the wire. Make sure to take into account the varying cross-sectional area by calculating the resistance at different points along the wire.

2. Why does the cross-sectional area of a wire affect power loss?

The cross-sectional area of a wire affects power loss because it is directly related to the resistance of the wire. A larger cross-sectional area results in lower resistance, which in turn reduces power loss. This is because a larger cross-sectional area allows for more space for electrons to flow through, reducing the chances of collisions and heat generation.

3. How does power loss impact the efficiency of a system?

Power loss results in the dissipation of energy in the form of heat, which reduces the overall efficiency of a system. This wasted energy not only leads to increased operating costs but also affects the performance and longevity of the system. Minimizing power loss is essential for improving the efficiency and sustainability of a system.

4. What factors can contribute to power loss in a wire of varying cross-sectional area?

Several factors can contribute to power loss in a wire of varying cross-sectional area, including the material of the wire, the length of the wire, the temperature, and the frequency of the current flowing through the wire. Additionally, any imperfections in the wire's surface or connections can also increase power loss.

5. How can power loss in a wire of varying cross-sectional area be minimized?

To minimize power loss in a wire of varying cross-sectional area, you can use thicker wires with larger cross-sectional areas to reduce resistance. Ensuring proper insulation, maintaining clean and secure connections, and using high-quality materials can also help minimize power loss. Additionally, optimizing the design and layout of the system to reduce the length of the wire and mitigate any external factors that contribute to power loss can further improve efficiency.

Similar threads

  • General Math
Replies
5
Views
953
  • Electromagnetism
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
743
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Electrical Engineering
Replies
5
Views
3K
Replies
11
Views
3K
  • Introductory Physics Homework Help
Replies
2
Views
4K
  • Advanced Physics Homework Help
Replies
10
Views
4K
  • Electrical Engineering
Replies
8
Views
2K
Replies
5
Views
5K
Back
Top