Register to reply

Thermodynamics: h vs u and Quality?

by swraman
Tags: quality, thermodynamics
Share this thread:
swraman
#1
May16-09, 04:28 AM
P: 145
Hi,

I am trying to understand the solution to a quiz I had, and am having trouble.

The question was:
Two well-insulated rigid tanks are connected by a valve. Tank A contains 5 kg of superheated steam at 800oC and 800kPa. Tank B contains 1 kg of saturated water mixture at 150oC and 30% quality. The valve is opened and the two tanks eventually come to thermodynamic equilibrium. Perform a thermodynamics analysis based on conservation of mass and energy to determine if there is any liquid in the final state.
The solution says:
KE=PE=W=Q=0
Conservation of Energy: Ei-Ef=ΔEsys=0 Therefore Ei=Ef. This becomes Ui=Uf or MA*UA+MB*UB=Mf*Uf

Tank A: VA=MA*vA=5kg x 0.618 m3/kg =3.09 m3
UA = 5kg x 3662.5 kJ/kg =18312.5 kJ

Tank B: VB=MB*vB=1kg x(0.3* 0.3924 m3/kg+0.7* 0.00109 m3/kg)=0.1184 m3
UB = 0.3x 2559.1 kJ/kg +0.7 *631.66 kJ/kg =1209.89 kJ

Total volume at equilibrium = 3.208 m3
Total mass= 6 kg

Specific volume= 3.208m3/6kg=0.5346 m3/kg

Total internal energy= 19522.39 kJ specific energy=3253.7 kJ/kg
(v, u) states falls into the superheated regime; there will be no liquid in the final state.
First off, why (when they solve for internal energy and specific volume) do thy use the formula (Quality)*Uvapor + (1-quality)*Uliquid ? This makes sense to me in my head, but it says no our text that the generic equation for u,h,or v is:
Y = Yliq + (Quality)*Ysat.vapor

so why dont they use it in this scenario?

Second, why do they use internal energy and not enthalpy?

Thanks

--a lost Mechanical engineering student
Phys.Org News Partner Science news on Phys.org
Wildfires and other burns play bigger role in climate change, professor finds
SR Labs research to expose BadUSB next week in Vegas
New study advances 'DNA revolution,' tells butterflies' evolutionary history
Q_Goest
#2
May16-09, 05:56 PM
Sci Advisor
HW Helper
PF Gold
Q_Goest's Avatar
P: 2,903
Quote Quote by swraman View Post
First off, why (when they solve for internal energy and specific volume) do thy use the formula (Quality)*Uvapor + (1-quality)*Uliquid ? This makes sense to me in my head, but it says no our text that the generic equation for u,h,or v is:
Y = Yliq + (Quality)*Ysat.vapor

so why dont they use it in this scenario?

Second, why do they use internal energy and not enthalpy?

Thanks

--a lost Mechanical engineering student
The equation you're trying to write: Y = Yliq + (Quality)*Ysat.vapor

... is off just a bit. The correct equation is: Y = Yf + X Yfg
Where Yf is the fluid property at 100% saturated liquid
and
Yfg is the difference between the fluid property at 100% saturated gas and 100% saturated liquid.

Regarding why not enthalpy, if you rewrite the first law it helps to clear this up. Normally, we write:
dU = dQ + dW

But for any control volume with flow in and out, we can also rewrite it:
dU = dQ + dW + dH
where
dH = (Uin + pVin) - (Uout + pVout)
Note that gas flowing into or out of a control volume does work pV so we say H = U + pV
(See ref: http://web.mit.edu/16.unified/www/FA.../chapter_4.htm )

So if we apply this to the system with two separated tanks that has a control surface around both tanks, we find no heat or work crossing the control surface (dQ=0 and dW=0), nor do we find any flow across the control surface, so dH = 0. All we're left with is dU = 0 (or U1 + U2 = U3).


Register to reply

Related Discussions
Energy quality Classical Physics 5
Thermodynamics: violation of 1st and/or 2nd law of thermodynamics in a heat engine Introductory Physics Homework 7
Prof teaches Statistical thermodynamics in a Classical Thermodynamics class Academic Guidance 10
AM vs. FM quality Computing & Technology 4
Quality coming out of the turbine Materials & Chemical Engineering 1