Understanding derivation of kinetic energy from impulse?

Click For Summary
The discussion focuses on the relationship between impulse, momentum, and kinetic energy. It highlights that the area under a force-time plot represents impulse, which is equivalent to the change in momentum. The key confusion arises from integrating with respect to velocity instead of time to derive kinetic energy. The explanation clarifies that by manipulating the equations, one can understand that work done is related to kinetic energy through integration in the velocity domain. Ultimately, the conversation emphasizes the importance of conceptual clarity in transitioning from time to velocity for calculating kinetic energy.
richsmith
Messages
4
Reaction score
0
I have a question that annoys my basic understanding of kinetic energy.

I know if I have a force-time plot then the area under the curve is equivalent to the impulse imparted on an object (in units Newton-Seconds). I know that this is also equivalent to the change in momentum of the object i.e. Ft = delta mV

I know that i can get these values from the plot by simply intgrating the Force function wrt to time. Now I want to determine the kinetic energy involved in this event. I know that k.e. = 1/2mV^2 so I know that is simply the integral of the impulse w.r.t. to velocity

Now that is the part conceptually I don't really grasp. What does it really mean to integrate with respect to velocity? This means I am suddenly on a velocity :rolleyes: domain, not time, and I don't really understand this?

Thanks.
 
Physics news on Phys.org
While impulse is ∫Fdt, work is ∫Fdx. Since force can be viewed as the rate of change of momentum, you have F = dp/dt = m dv/dt. Thus:
W = ∫Fdx = ∫m (dv/dt) * dx = m∫dv*(dx/dt) = m∫v dv = ½mv² (which is kinetic energy).

Make sense?
 
After some head scratching yes it does, finaly.

I think my mistake has always been trying to integrate wrt time. I really had to step back and ask myself what i was after, work that is, which is not a time integral.

Manipulating dv/dt to dx/dt and then subbing in V now makes it algebraicly understandable.

Thanks alot.

Richard.
 
I have a question that annoys my basic understanding of kinetic energy.

Similar to questions which annoys my basic understanding of electrostatics?

Why not just calculate the final velocity of the body and then calculate the K.E.

Take as a caveat that the momentum of a body might not be directly proportional to K.E possesed by it.
 
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 21 ·
Replies
21
Views
6K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 35 ·
2
Replies
35
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
2K
  • · Replies 60 ·
3
Replies
60
Views
5K