[Special relativity - Mathematical background] Tensor and pseudo-tensor

wizard85
Messages
12
Reaction score
0
Hi to all,

Let A^{ik} be an antisymmetric tensor of rank 2; Why is A^{*ik}=1/2e ^{iklm}A_{lm} defined its dual? e^{iklm} is the completely antisymmetric unit tensor.

Furthermore, e^{iklm} is a pseutotensor, what does it mean? Conversely, why the product e^{iklm} e_{prst} is a true tensor?

Thanks in advance... ;)
 
Physics news on Phys.org
I believe it has to do with the fact that in n dimensions the spaces of p forms and of (n-p) forms are diffeomorphic, which you can easily show by yourself by counting how many independent elements a p form and a (n-p) form have in n dimensions.

A hint: a p form is described in terms of a wedged product of p differentials,

<br /> \omega = \omega_{\mu_{1}\ldots\mu_{p}}dx^{\mu_{1}}\wedge\ldots\wedge dx^{\mu_{p}}<br />

The order of the p differentials doesn't matter; you just pick up a minus sign by rearranging them, so changing order doesn't give you another independent basis. So you can choose p differentials out of n differentials in which the order doesn't matter. Now also apply this reasoning for (n-p) forms. (Maybe it helps to do it explicitly for 3 forms in 4 dimensions first, and then for 1 forms in 4 dimensions)

So the dual is defined as such to go between these two spaces of forms, and this is done via the Hodge dual, which depends on the metric in general. This hodge dual uses the epsilon "tensor" symbol. It's kindoff nasty, because in general it's not a tensor! The symbol is defined as being +1,0, or -1, depending on the indices. If you write down a coordinate transformation, you'll see that the Jacobian comes into play (just look at how determinants of matrices are defined in terms of epsilon symbols!). This means the symbol is a tensor DENSITY, which is indicated by "pseudo". However, you canv take the tensor product between two tensor densities with opposite weights to obtain an honest tensor. In special relativity texts this is not always emphasized.

With the Hodge dual you use the determinant of the metric to obtain an honest tensor out of the epsilon symbol.

You product of two epsilon symbols however IS a true tensor, because if you write down the tensor transformation law for this product, the two Jacobian terms cancel. This is again because these are tensor densities of opposite weights.

So, just write down the tensor transformation laws for your objects! :) You'll have to use

<br /> A = [A]_{ij}, \ \ \ \ \ \ \ det(A) = \epsilon_{i_1\ldots i_n}[A]_{1i_1}\ldots [A]_{ni_n}<br />
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top