If f(x)= e^{-x} then f(0)= 1, f'= -e^{-x} so f'(0)= -1, f"(0)= e^{-x} so f"(0)= 1, etc. The "nth" derivative, evaluated at x= 0, is 1 if n is even, -1 if n is odd. The Taylor's series, about x= 0, for e^{-x} is
\sum_{n=0}^\infty \frac{(-1)^n}{n!}x^n[/itex].<br />
<br />
In particular, <br />
e^{-0.5}= \sum_{n=0}^\infty \frac{(-1)^n}{n!}(0.5)^n[/itex]<br />
<br />
The usual Taylor&#039;s series for e^x is, of course, <br />
\sum_{n=0}^\infty \frac{1}{n!}x^n[/itex] &lt;br /&gt;
&lt;br /&gt;
and now&lt;br /&gt;
e^{-0.5)= \sum_{n=0}^\infty \frac{1}{n!}(-0.5)^n= \sum_{n=0}^\infty \frac{1}{n!}(-1)^n(0.5)^n&lt;br /&gt;
= \sum_{n=0}^\infty \frac{(-1)^n}{n!}(0.5)^n&lt;br /&gt;
&lt;br /&gt;
They are exactly the same.