How Should You Calculate Roller Coaster Acceleration Using Motion Diagrams?

AI Thread Summary
To calculate roller coaster acceleration using motion diagrams, the average acceleration can be determined with the formula a=(v2-v1)/t, where v2 and v1 are the velocities at two points. The problem's wording is misleading, as "average" suggests a time interval while "at" implies a single instant, creating confusion. To find average acceleration, one should use the tangent lines at the start and end points to establish the direction of velocities. For instantaneous acceleration, selecting two points very close to the point of interest provides a better approximation. This method effectively clarifies the calculation process for roller coaster dynamics.
Glorzifen
Messages
25
Reaction score
0

Homework Statement


1192bkl.jpg


Homework Equations


a=(v2-v1)/t

The Attempt at a Solution


I used the vector between the point before A and A as my v2.
I used the vector between the point two before A and the point before A as my v1.
I put them tail to tail and he resultant vector looks like (E) in the image.

Is this how I'm supposed to do these problems?
 
Physics news on Phys.org
Roughly, yes. The problem is poorly worded because the average acceleration "at" A is confusing. "Average" implies either a finite time interval or a set of values, but "at" implies a single point or instant. I would have either asked for the instantaneous acceleration or asked for the average acceleration between two points.

If you have a start and end point on the path, then you can find the direction of the initial and final velocities (v1 and v2) by drawing the tangent line at those two points, and your average acceleration will point in the direction given by the vector difference v2 - v1

If you want to approximate the instantaneous acceleration, you can simply choose two points very near to A (on either side of it) and follow the same method; the closer those points are to A, the better approximation it gives. It sounds like this is what you did, but by choosing two points that were already marked for you.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Back
Top