Double Integral - polar coordinates

exidez
Messages
41
Reaction score
0

Homework Statement



<br /> \displaystyle\int\int\sqrt{4-x^2-y^2} dA<br />

<br /> R{(x,y)|x^2+y^2\leq4 .. 0\leq x}<br />

The Attempt at a Solution



So far i have: <br /> \displaystyle\int^{\pi}_{0}\int^{r}_{0}\sqrt{4-r^2} rdrd\theta<br />

Solving i get:
<br /> \displaystyle\int^{\pi}_{0}\frac{-1}{3}(4-r^2)^{\frac{3}{2}}+\frac{1}{3}(4)^{\frac{3}{2}}d\theta<br />

Am i on the right track, and if so how do i integrate the third root term?edit//

ok i forgot the radius goes from 0 to 2... if i sub 2 into r, i can integrate it. But just to check, am i still doing this correctly?
 
Last edited:
Physics news on Phys.org
exidez said:
edit//

ok i forgot the radius goes from 0 to 2... if i sub 2 into r, i can integrate it. But just to check, am i still doing this correctly?

Yes, you should integrate from zero to 2.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top