Diagonalizing Spin Hamiltonian

  • Thread starter Thread starter antibrane
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
antibrane
Messages
37
Reaction score
0
How would one find the eigenstates/values for the following Hamiltonian?

<br /> H=A S_z + B S_x<br />

where A,B are just constants. Any help is appreciated. Thanks.
 
Physics news on Phys.org
I don't know how to use latex that well, so I'll try to give you the general idea as to how I got the solution.
The matrix for which we need to find the eigenvalues is
[A B
B -A]
the eigenvalues come out to be sqrt(A^2 + B^2), with both negative and positive values of the square-root.
Next, use the substitution cos(theta) = A/[sqrt(A^2 + B^2) and sin(theta) = B/sqrt(A^2 + B^2), while solving the equations for the components of the eigenvector for either value of the eigenvalue. You will have the second component of the eigenvector related to the first component multiplied by the tan of half the angle theta, with plus/minus sign for the corresponding sign of the eigenvalue.
 
Thanks, I think I've figured it out now.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top