Biplane vs. Monoplane


by Cashlover123
Tags: biplane, monoplane
Cashlover123
Cashlover123 is offline
#1
Sep3-10, 12:31 AM
P: 18
I thought that biplane has more wetted area due to the two wings and produce more drag. However, it is supposed to have half of the drag produced by the monoplane of the same wingspan, according to what i read in a book. Can anybody help me about with this? Which has the greater drag and why?
Phys.Org News Partner Science news on Phys.org
Better thermal-imaging lens from waste sulfur
Hackathon team's GoogolPlex gives Siri extra powers
Bright points in Sun's atmosphere mark patterns deep in its interior
Cyrus
Cyrus is offline
#2
Sep3-10, 01:36 PM
Cyrus's Avatar
P: 4,780
Which book did you read that says this, I'm having a hard time believing it. Biplanes are supposed to have less structural weight, but higher drag.
mugaliens
mugaliens is offline
#3
Sep3-10, 04:12 PM
P: 594
One of the most revered aircraft of all time is the Beechcraft Staggerwing (Beech Model D17S). With a staggering :) 40% payload fraction, quite high for aircraft designed in 1930, retractable gear, and a cruise speed of 176 kts, it's a testament to exceptional engineering of the period.

It was also designed such that the lower, forward wing stalls first, which causes a gentle pitch down to restore proper flight.

Even so, it carried only four people and required a 450 hp engine to achieve that 176 kts, a feat easily exceeded by numerous 200 hp monowing designs over the last half century.

Bottom line: A biplane of wingspan x has approximately twice the drage of a monowing of the same wingspan.

However, that's not the whole story, for if it has the same weight, it would have half the wing loading, as well, and that's counter to good design. Thus, if you were to modify a biplane into a monowing, you would need a larger wing!

Cashlover123
Cashlover123 is offline
#4
Sep4-10, 12:09 PM
P: 18

Biplane vs. Monoplane


Quote Quote by Cyrus View Post
Which book did you read that says this, I'm having a hard time believing it. Biplanes are supposed to have less structural weight, but higher drag.
I read this in the book called "Aircraft Design: A Conceptual Approach, 4th Edition" by Daniel P. Raymer in page 71-73.
Cyrus
Cyrus is offline
#5
Sep4-10, 05:02 PM
Cyrus's Avatar
P: 4,780
Quote Quote by Cashlover123 View Post
I read this in the book called "Aircraft Design: A Conceptual Approach, 4th Edition" by Daniel P. Raymer in page 71-73.
I have that book, it's a great one. Let me check those pages for you and report back.
mugaliens
mugaliens is offline
#6
Sep7-10, 01:26 AM
P: 594
Quote Quote by Cyrus View Post
I have that book, it's a great one. Let me check those pages for you and report back.
What did you find?
Cyrus
Cyrus is offline
#7
Sep7-10, 08:49 AM
Cyrus's Avatar
P: 4,780
Quote Quote by mugaliens View Post
What did you find?
Sorry, I got busy flying over the weekend and forgot to look. I'll scan the page and post it in a day or two. promise.
dtango
dtango is offline
#8
Sep7-10, 01:25 PM
P: 43
Quote Quote by Cyrus View Post
Sorry, I got busy flying over the weekend and forgot to look. I'll scan the page and post it in a day or two. promise.
The OP doesn't quote Raymer completely. Raymer mentions that theoretically a biplane could reduce induced drag up to a 1/2. Raymer goes on to state however in practice it's not possible due to interference affects due to combined circulation affects betweeen the wings and because of this practically speaking bi-planes have higher induced drag compared to an equivalent mono-wing. There's more detail but that's the gist of it.
Cyrus
Cyrus is offline
#9
Sep7-10, 01:58 PM
Cyrus's Avatar
P: 4,780
Thanks dtango.
dtango
dtango is offline
#10
Sep7-10, 02:21 PM
P: 43
Quote Quote by Cyrus View Post
Thanks dtango.
Your welcome! You should review it anyway though in case you want to elaborate. I left out all the juicy stuff in my foggy cliff notes version after I glanced at it yesterday!
mugaliens
mugaliens is offline
#11
Sep18-10, 01:55 AM
P: 594
Quote Quote by dtango View Post
The OP doesn't quote Raymer completely. Raymer mentions that theoretically a biplane could reduce induced drag up to a 1/2. Raymer goes on to state however in practice it's not possible due to interference affects due to combined circulation affects betweeen the wings and because of this practically speaking bi-planes have higher induced drag compared to an equivalent mono-wing. There's more detail but that's the gist of it.
From what I recall of aero engineering, the only reason biplanes existed in the first place had to do with the following three:

1. Materials strengths at the time didn't allow for highly maneuverable monoplanes.

2. Materials strength to weight ratios favored a box structure for those heavy, under-horsepowered engines with respect to the airframes which had to haul and maneuver them all over the sky.

3. With the advent of steel, then aluminum airframes, the previous considerations were mute, and monoplanes have ruled the air ever since. :)

Really, folks, it's this simple...
Cashlover123
Cashlover123 is offline
#12
Nov17-10, 10:18 AM
P: 18
how much of drag do you think is produced compared to aircraft's total drag if a bump of a size of a tennis ball is created on the lower surface of fuselage?? Assuming aircraft fuselage diameter is tad less than the tennis ball. Does it affect aircraft's lift much, because fuselage dont create much lift??
boneh3ad
boneh3ad is offline
#13
Nov17-10, 01:35 PM
boneh3ad's Avatar
P: 1,438
Wait, you mean a bump that is slightly larger than the total diameter of the fuselage? I am just trying to make sure I understand you correctly.
Cashlover123
Cashlover123 is offline
#14
Nov17-10, 11:37 PM
P: 18
Yes. I was wondering if you had an RC aircraft smaller in fuselage diameter than a regular tennis ball and you want to carry the balls...
dtango
dtango is offline
#15
Nov18-10, 10:24 AM
P: 43
Quote Quote by Cashlover123 View Post
how much of drag do you think is produced compared to aircraft's total drag if a bump of a size of a tennis ball is created on the lower surface of fuselage?? Assuming aircraft fuselage diameter is tad less than the tennis ball. Does it affect aircraft's lift much, because fuselage dont create much lift??
I don't know of an easy way of evaluating that not requiring some fancy maths or wind-tunnel tests to know for sure. In general though, purely spherical objects tend to be pretty draggy.



image source: http://www.me.utexas.edu/~dsclab/lab...re/Cd_v_NR.jpg
AlephZero
AlephZero is offline
#16
Nov18-10, 06:42 PM
Engineering
Sci Advisor
HW Helper
Thanks
P: 6,342
Quote Quote by mugaliens View Post
From what I recall of aero engineering, the only reason biplanes existed in the first place had to do with the following three:

1. Materials strengths at the time didn't allow for highly maneuverable monoplanes.

2. Materials strength to weight ratios favored a box structure for those heavy, under-horsepowered engines with respect to the airframes which had to haul and maneuver them all over the sky.

3. With the advent of steel, then aluminum airframes, the previous considerations were mute, and monoplanes have ruled the air ever since. :)

Really, folks, it's this simple...
The basic reason was that a two wings and a set of bracing wires form a much stiffer structure than one. Effectively the wings and bracing structure form a single I-beam structure.

Flexible wings can fly perfectly well (look at any species of bird) but the big problem with early aviation was getting enough force from control surfaces. If you try to put a control surface on a flexible wing, you just bend and twist the wing instead of getting a control force.

As soon as it was possible to design efficient airfoil shapes with enough thickness to contain a wing spar that was big enough to resist bending and torsion, then goodbye biplanes.
Cashlover123
Cashlover123 is offline
#17
Nov21-10, 12:31 AM
P: 18
Thanks all for your interest in this thread.
Another question was for calculations, what AR is to be considered? The AR due to the single span of the total span of the wings?
Also, is there any method to calculate lift due to fuselage? or is it better off neglected?
Phrak
Phrak is offline
#18
Nov21-10, 01:21 AM
P: 4,513
Quote Quote by Cashlover123 View Post
I thought that biplane has more wetted area due to the two wings and produce more drag. However, it is supposed to have half of the drag produced by the monoplane of the same wingspan, according to what i read in a book. Can anybody help me about with this? Which has the greater drag and why?
If this question was answered, I missed it.

We have to make a lot of simplifying assumptions. Assume the two airfoils don't interact. Each wing of the biplane is the same shape and aspect ratio of the monoplane. Neglect form drag and drag from external structure, and on and on.

Using the oversimplified model of lift and drag (no low-drag pocket) each wing of the biplane will carry half the load, the lift is linear with angle of attack and the induced drag increases as the square of the angle of attack. [I think this also assumes a symmetrical wing.]

The induced drag of each biplane wing is 1/4 the induced drag of the monoplane wing. The two, combined, have 1/2 the induced drag of the monoplane wing.


Register to reply

Related Discussions
Induced drag in a biplane Mechanical Engineering 3
Remote controlled aircraft: Biplane efficiency Aerospace Engineering 11