The derivative of 1/sqrt(x)


by Pithikos
Tags: advanced calculus, division, limit definition, square
Pithikos
Pithikos is offline
#1
Jan6-11, 01:31 PM
P: 48
1. The problem statement, all variables and given/known data
Find the derivative of [tex]\frac{1}{\sqrt{x}}[/tex] using the lim definition.

2. Relevant equations
f(x)'=[tex]\frac{f(x+h)-f(x)}{h}[/tex]

3. The attempt at a solution
Keep in mind that everything bellow is for the lim as h approaches 0.

[tex]\frac{1}{\sqrt{x}}[/tex]

[tex]\Downarrow[/tex]

[tex]
\frac{
\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}
}
{h}
[/tex]

[tex]\Downarrow[/tex]

(I multiply both nominator and denominator with conjugate)

[tex]
\frac
{
\frac{1}{x+h}-\frac{1}{x}
}
{
\frac{h}{\sqrt{x+h}}+\frac{h}{\sqrt{x}}
}
[/tex]

After this I am totally lost..
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes
Dick
Dick is offline
#2
Jan6-11, 01:38 PM
Sci Advisor
HW Helper
Thanks
P: 25,174
Combine numerator into a single fraction. See if you get an h you can cancel with the h in the denominator.
╔(σ_σ)╝
╔(σ_σ)╝ is offline
#3
Jan6-11, 01:41 PM
╔(σ_σ)╝'s Avatar
P: 851
You could also use the definition...

[tex]f'(x)= \lim_{ x \to a} \frac{f(x)- f(a)}{x-a} [/tex].

Pithikos
Pithikos is offline
#4
Jan6-11, 02:58 PM
P: 48

The derivative of 1/sqrt(x)


Thaaaank you! Problem solved! :)
Did the same to denominator and then combined the two franctions into one.
HallsofIvy
HallsofIvy is offline
#5
Jan6-11, 04:15 PM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,896
Glad you got it solved. As a check, remember that you can write [itex]\frac{1}{\sqrt{x}}[/itex] as [itex]x^{-1/2}[/itex] and use the power rule.
SammyS
SammyS is offline
#6
Jan6-11, 04:29 PM
Emeritus
Sci Advisor
HW Helper
PF Gold
P: 7,416
Quote Quote by Pithikos View Post
1. The problem statement, all variables and given/known data
Find the derivative of [tex]\frac{1}{\sqrt{x}}[/tex] using the lim definition.

2. Relevant equations
f(x)'=[tex]\frac{f(x+h)-f(x)}{h}[/tex]

3. The attempt at a solution
Keep in mind that everything bellow is for the lim as h approaches 0.

[tex]\frac{1}{\sqrt{x}}[/tex]

[tex]\Downarrow[/tex]

[tex]
\frac{
\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}
}
{h}
[/tex]

[tex]\Downarrow[/tex]

(I multiply both nominator and denominator with conjugate)

[tex]
\frac
{
\frac{1}{x+h}-\frac{1}{x}
}
{
\frac{h}{\sqrt{x+h}}+\frac{h}{\sqrt{x}}
}
[/tex]

After this I am totally lost..
This is perfectly fine - up to this point.
Continuing on:

[tex]\displaystyle =\frac
{ \displaystyle \frac{x-(x+h)}{(x+h)x}
}
{ \displaystyle \frac{h}{\ \sqrt{x+h}}+\frac{h}{\sqrt{x}\ \ }
} [/tex]

[tex]\displaystyle =\frac
{ \displaystyle \frac{-h}{(x+h)(x)}\ \cdot\ \displaystyle \frac{1}{h}
}
{ \displaystyle \left(\frac{h}{\sqrt{x+h}}+\frac{h}{\sqrt{x}}\right) \ \cdot\ \displaystyle \frac{1}{h}}
}
[/tex]

[tex]\displaystyle =\frac
{ \displaystyle \frac{-1}{(x+h)(x)}
}
{ \displaystyle \frac{1}{\sqrt{x+h}}+\frac{1}{\sqrt{x}}
}
[/tex]

Then,
[tex]\displaystyle f'(x)= \lim_{h\to 0} \ \
\frac
{ \displaystyle \frac{-1}{(x+h)(x)}
}
{ \displaystyle \frac{1}{\sqrt{x+h}}+\frac{1}{\sqrt{x}}
}
[/tex]


Register to reply

Related Discussions
The derivative of g(x)=R(sqrt(u(x))? Calculus & Beyond Homework 11
derivative x+sqrt(x) Calculus & Beyond Homework 1
second derivative of sqrt(x) * e^(-x) Calculus & Beyond Homework 1
derivative of sqrt(xy) Calculus & Beyond Homework 1
What's the derivative of ... {sqrt (2x)} ? General Math 5