Calculate Position in 3D Space with Force and Impulse

AI Thread Summary
To calculate a body's position in 3D space under a specific force and impulse, numerical integration is essential for determining velocities and positions over small time intervals. The trapezoidal method can be used to compute average acceleration and update velocity and position iteratively. Each time step involves calculating new velocity and position based on previous values and average acceleration. An iterative corrector method enhances accuracy, requiring multiple iterations for convergence. Using small time steps is crucial for effective results in this algorithm.
Dona123
Messages
7
Reaction score
0
Hi,

I want to calculate a body x and y position at a particular z value in 3D space when applying particular force and impulse.

Appreciates all the help!

Tnx
Dona
 
Physics news on Phys.org
My objective is to draw the curvature path of the body in 3D space when applying a particular force and impulse!

Thanks
 
Assuming you can calculate accelerations, you'll need to do some form of numerical integration to calculate velocities and positions in small steps of time.

For each time step, you calculate

new_velocity = old_velocity + time_step x average_acceleration

One way to do this is to use trapezoidal method

average_accleration = 1/2 (acceleration0 + acceleration1)

where acceleration0 is the acceleration at the start of a time step and acceleration1 is the acceleration at the end of a time step. This requires you be able to calculate acceleration1 directly or to be able to predict it via an iterative method (see below)

You can then calculate position once you calculate the new velocity, using the same method:

new_position = old_position + time_step x 1/2 x (old_velocity + new_velocity)

An iterative corrector method will improve the results. In the algorithm shown below, an, vn, and pn, are successive "guesses" that should converge quickly. F(...) calculates the acceleration based on pn(t), and Δt is the elapsed time per step. You may want to do 6 to 8 interations instead of the 4 shown in this example. The first step is essentially Euler (since a1(t) is set = F(p0(t)) (= a(t-1)), the remaining steps are trapezoidal. Even though each step of this algorithm will converge to a specific set of values, the algorithm is based on trapezoidal rule, a linear approximation, so you need to use small time steps (Δt).

v0(t) = v(t-1)
p0(t) = p(t-1)

a1(t) = F(p0(t)) (= a(t-1))
v1(t) = v(t-1) + 1/2 (a(t-1) + a1(t)) Δt
p1(t) = p(t-1) + 1/2 (v(t-1) + v1(t)) Δt

a2 = F(p1(t))
v2(t) = v(t-1) + 1/2 (a(t-1) + a2(t)) Δt
p2(t) = p(t-1) + 1/2 (v(t-1) + v2(t)) Δt

a3 = F(p2(t))
v3(t) = v(t-1) + 1/2 (a(t-1) + a3(t)) Δt
p3(t) = p(t-1) + 1/2 (v(t-1) + v3(t)) Δt

a4 = F(p3(t))
v4(t) = v(t-1) + 1/2 (a(t-1) + a4(t)) Δt
p4(t) = p(t-1) + 1/2 (v(t-1) + v4(t)) Δt

...

v(t) = vn(t)
p(t) = pn(t)
a(t) = F(pn(t))

time += Δt
t += 1

This is a predictor-corrector type algorithm:

http://en.wikipedia.org/wiki/Predictor-corrector_method#Euler_trapezoidal_example
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
Back
Top