In problems like this always try to translate the frame so that it is fixed in their center of mass, then it gets much easier to calculate on the photons afterwards.
Hi,
I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem.
Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$
Where ##b=1## with an orbit only in the equatorial plane.
We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$
Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units,
According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##,
## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units.
So is this conversion correct?
Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?