VinnyCee
- 486
- 0
Homework Statement
Let n\,\in\,\mathbb{N}. Let F be a field, and suppose that p(x)\,\in\,F[x] is a polynomial of degree (n + 1).
Let S be the set:
S\,=\,\left\{\left(a_0,\,\ldots,\,a_n\right)\,:\,a_i\,\in\,F\right\}
Define \phi: S\,\rightarrow\,F[x]/\left(p(x)\right) via
\phi\left(\left(a_0,\,\ldots,\,a_n\right)\right)\,=\,\left[a_0\,+\,a_1\,x\,+\,\cdots\,+\,a_n\,x^n\right]
Prove that \phi is a bijection.
Homework Equations
f\,:\,B\,\rightarrow\,C is injective provided that whenever f(a) = f(b) in C, then a = b in B.
f\,:\,B\,\rightarrow\,C is surjective iff I am f = C.
f\,:\,B\,\rightarrow\,C is bijective provided that f is both injective and surjective.
If f\,:\,B\,\rightarrow\,C is a function, then the image of f is this subset of C:
Im\,f\,=\,\left{c\,|\,c\,=\,f(b)\,for\,some\,b\,\in\,B\right}\,=\,\left{f(b)\,|\,b\,\in\,B\right}
The Attempt at a Solution
Prove Injectivity:
Here, I need to prove that whenever F[a]/(p(a)) = F/(p(b)) in F[x]/(p(x)), then a = b in S.
Now I need expressions for F[a]/(p(a))...
F[a]\,\equiv\,g(a)\,\left(mod\,p(a)\right)
And F/(p(b))...
F<b>\,\equiv\,h(b)\,\left(mod\,p(b)\right)</b>
Now how do I show that a = b in S?
Last edited: