I noticed my answer, and the answer from wolfram alpha varies.
Could anyone check my calculations?
A=-1/4 and C=1/4, not the other way around(I think)
\begin{array}\\\frac{u^2}{(u-1)^2(u+1)^2}=\frac{A}{u+1}+\frac{B}{(u+1)^2}+\frac{C}{u-1}+\frac{D}{(u-1)^2}\Leftrightarrow u^2=(Au+A)(u-1)^2+B(u-1)^2+(Cu-C)(u+1)^2+D(u+1)^2\Leftrightarrow\\
(Au+A)(u^2-2u+1)+B(u^2-2u+1)+(Cu-C)(u^2+2u+1)+D(u^2+2u+1)-u^2=0\Leftrightarrow\\
(Au^3-2Au^2+Au+Au^2-2Au+A)+(Bu^2-2Bu+B)+(Cu^3+2Cu^2+Cu-Cu^2-2Cu-C)+(Du^2+2Du+D)-u^2=0\Leftrightarrow\\
u^3(A+C)+u^2(-A+B+C+D-1)+u(-A-2B-C+2D)+(A+B-C+D)=0\\
\begin{Bmatrix}
A& +& C& &=0 \\
-A& +B& +C& +D&=1 \\
-A& -2B& -C& 2D&=0 \\
A& +B & -C & +D&=0
\end{Bmatrix}\Leftrightarrow
\begin{Bmatrix}
A& =-C& & & \\
-A& +B& -A& +D&=1 \\
-A& -2B& +A& +2D&=0 \\
A& +B & +A & +D&=0
\end{Bmatrix}\Leftrightarrow
\begin{Bmatrix}
A& =-C& & & \\
-2A& +B & &+D &=1 \\
& -2B& & +2D&=0 \\
2A& +B & & +D&=0
\end{Bmatrix}\\
\begin{Bmatrix}
A& =-C& & \\
-2A& +2B & &=1 \\
B& =D& & \\
2A& +2B & &=0
\end{Bmatrix}\Rightarrow 4B=1\Leftrightarrow B=\frac{1}{4}=D\\
\begin{Bmatrix}
A& =-C& & \\
B& =D& =\frac{1}{4}& \\
2A& +\frac{1}{2} & &=0
\end{Bmatrix}\Rightarrow A=-\frac{1}{4}, C=\frac{1}{4}\end{array}