MellyC
- 5
- 0
Homework Statement
The four functions v0 = 1; v1 = t; v2 = t^2; v3 = t^3 form a basis for the vector space of
polynomials of degree 3. Apply the Gram-Schmidt procedure to find an orthonormal basis with
respect to the inner product: < f ; g >= (1/2)\int 1-1 f(t)g(t) dt
Homework Equations
ui = vi - \sumi-1j <vi, uj>/||vj||2> *vj
The Attempt at a Solution
I am not sure that the impact that given inner product integral gives to the question. I don`t even know how to approach this question as well, because I have typically been given vectors of the form (x1, y1, z1) to use gram-schmidt orthonormalization with, not of the given form.