PCSL said:
How do you do stuff like sin(pi/4) in your head or sin(1) or sec(pi(x))? Thanks for your help. I'm in Calc II and fully understand the calculus but my trig foundation from high school isn't the best.
There are a small angles whose sines and cosines you should have memorized:
Degrees Radians
0 0
30 pi/6
45 pi/4
60 pi/3
90 pi/2
From geometry, a 30 (deg) - 60 - 90 triangle has a hypotenuse that's twice as long as the short side, so sin(30 deg) = sin(pi/6) = 1/2 and cos(30 deg) = cos(pi/6) = sqrt(3)/2.
Looking at the other acute angle in this triangle, you can see that sin(60 deg) = cos(30) = sqrt(3)/2, and that cos(60 deg) = sin(30 deg) = 1/2.
A 45 (deg) - 45 - 90 right triangle has equal legs. If each leg is 1 unit, then by the Pythagorean Theorem, the hypotenuse = sqrt(1^2 + 1^2) = sqrt(2).
From this you can see that sin(45 deg) = sin(pi/4) = 1/sqrt(2), which is the same as sqrt(2)/2. Also, cos(45 deg) = cos(pi/4) = sqrt(2)/2.
Sine and cosine are usually presented using the unit circle, where one ray from an angle theta (measured counterclockwise with respect to the positive x-axis) intersects this circle at a point (x, y). The x-coordinate gives the cosine of theta; the y-coordinate give the sine of theta.
At the point (0, 1), which corresponds to and angle of 90 deg. or pi/2, cos(pi/2) = 0 and sin(pi/2) = 1.
Nobody is going to expect you to have sin(1) committed to memory. I'm not sure what you mean by sec(pi(x)). Do you mean sec(pi * x)? Depending on what x is, this might or might not be something that a teacher would expect you to calculate without a calculator.