Einstein Field equations for dummies

alecrimi
Messages
18
Reaction score
0
Hi all!
When we talk about the Einstein Field equations.
What do we mean with "extremal proper time" or "extremal path"?
Why "extremal" ?
and why "proper" ?

and why do we need to introduce the concept of "geodesic" ?
Cheers
 
Last edited:
Physics news on Phys.org
Why "extremal" ?
and why "proper" ?
They are jargon words. What else would you call them?

Space-time is tricky to talk about - these concepts help. Remember, you now have four dimensions ... eg. what would a "maxima" in 4D mean?
https://www.physicsforums.com/archive/index.php/t-488751.html

and why do we need to introduce the concept of "geodesic" ?
Same reason we have any kind of coordinate system - only the geodesic is the coordinate system used by the Universe... which makes it special.
 
In the context of proper time "extremal" mostly means maximal in practice. And proper time is what you measure with a wristwatch, or by aging. So you can think of "extremal proper time" as "maximal aging", usually.

However, there is a significant difference between "mostly means in practice" and "always means".

To understand more precisely the definition of extremal, first consider a function of a single variable, y = f(x)

An an extremal point, dy/dx = 0, i.e. the slope is horizontal.

Extremal points can be either a maximum, a minimum, or a saddle points.

If all this isn't a review, or if you lack calculus, you may need to do some further reading and research to fully understand this. (I'm sorry, but I don't know your background).

A quick example might help. Rather than draw graphs, which is the clearest, I'll use some well known simple equations:

y=x^2 has a minimum at x=0
y = -x^2 has a maximum at x=0
y = x^3 has a saddle point at x=0

We can apply similar definitions to functions of more than one variable, in which case we require all the derivatives to vanish to have an extremal point.

In the case of an extremal path, we do a bit of fancy mathematical footwork to extend the same basic definition we use with one variable to an infinite number of variables.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top