Register to reply

Circumference of a circle in Poincare Half Plane

by demonelite123
Tags: circle, circumference, plane, poincare
Share this thread:
demonelite123
#1
Feb23-12, 02:30 PM
P: 219
i am trying to figure out how to calculate the circumference of a circle in the Poincare Half Plane. I know that vertical lines are geodesics so using the arclength formula, the distance between 2 points [itex] (x_0, y_0) and (x_1, y_1) [/itex] on a vertical line is [itex] ln(y_1/y_0) [/itex]. Thus, if i have a circle centered at (0, b) on the y axis with radius r, then the radius of the circle using the Poincare metric will be [itex] \frac{1}{2}ln(\frac{b+r}{b-r}) [/itex].

I want to find the circumference of the circle [itex] x^2 + (y-b)^2 = b^2 - 1 [/itex] so i parametrize [itex] x = \sqrt{b^2-1}cos(\theta), y = b + \sqrt{b^2-1}sin(\theta) [/itex]. I then use the arclength formula and get [itex] C = \int^{2\pi}_0 \frac{\sqrt{b^2-1}}{b+\sqrt{b^2-1}sin(\theta)} d\theta [/itex]. I have the extra factor of [itex] y = b + \sqrt{b^2-1}sin(\theta) [/itex] on the bottom since I am using the Poincare metric. This evaluates to [itex] 2\pi\sqrt{b^2-1} [/itex] which i know shouldn't be right since the circumference of this circle using the regular euclidean metric is also just [itex] 2\pi\sqrt{b^2-1} [/itex]. can someone help me figure out what went wrong here?
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
arkajad
#2
Feb23-12, 02:54 PM
P: 1,411
Why do you think your answer is wrong? Can you say more? Justify it better?


Register to reply

Related Discussions
Set Theory and Circumference of a Circle Set Theory, Logic, Probability, Statistics 13
Pdf of area and circumference of a circle Calculus & Beyond Homework 1
Circumference of a circle in parametrics Calculus & Beyond Homework 3
Circumference of a circle General Math 6
Approximation of a Circle's Circumference General Math 3