3D Fourier Transform


by Ansatz7
Tags: fourier, transform
Ansatz7
Ansatz7 is offline
#1
Mar5-12, 07:00 AM
P: 29
The problem statement, all variables and given/known data
Calculate the Fourier transform of f(x) = (1 + |x|2)-1, x[itex]\in[/itex]ℝ3

The attempt at a solution

As far as I can tell, the integral we are supposed to set up is:

Mod note: Fixed your equation. You don't want to mix equation-writing methods. Just stick to LaTeX.
$$\int \frac{e^{-2\pi i (\vec{k}\cdot\vec{x})}}{1+|\vec{x}|^2}dV = \int \frac{e^{-2\pi i r(k_1\sin\theta\cos\phi + k_2 \sin\theta\sin\phi + k_3\cos\theta)}}{1+r^2} r^2\sin\theta\,d\theta\,d\phi\,dr$$but I have no idea how to perform this integral. Any ideas appreciated! (Also, sorry about the fractions - I have no idea why they aren't working because I have no tex experience).
Phys.Org News Partner Science news on Phys.org
Going nuts? Turkey looks to pistachios to heat new eco-city
Space-tested fluid flow concept advances infectious disease diagnoses
SpaceX launches supplies to space station (Update)
Dick
Dick is offline
#2
Mar5-12, 09:10 AM
Sci Advisor
HW Helper
Thanks
P: 25,168
The first step is to use that your f(x) doesn't depend on the direction of the vector x. So the fourier transform won't depend on the direction of k. So you can choose a k that points along the z-axis. That simplifies thing a lot.
Ansatz7
Ansatz7 is offline
#3
Mar5-12, 08:24 PM
P: 29
*facepalm* Of course, that at least makes the angular part of the integral simple. After the angular integral I ended up with:
$$\frac{2}{k}\int \frac{r\sin2\pi kr}{1+r^2}\,dr$$

I don't think this is integrable, but that makes sense based on the way the question was posed.I think it ought to be square integrable though. I tried to compute this using residues - I was hoping to get something analogous to the 1D Fourier transform

$$f(x) = \frac{1}{1 + x^2},
\hat{f}(k) = e^{-2\pi x|k|}$$

but from the look of the residue I have so far it doesn't seem like it will be so aesthetically pleasing. At any rate, thanks for your help, and thanks vela for editing my equation. I've never used LaTex so I was guessing.

Dick
Dick is offline
#4
Mar5-12, 08:33 PM
Sci Advisor
HW Helper
Thanks
P: 25,168

3D Fourier Transform


Quote Quote by Ansatz7 View Post
*facepalm* Of course, that at least makes the angular part of the integral simple. After the angular integral I ended up with:
$$\frac{2}{k}\int \frac{r\sin2\pi kr}{1+r^2}\,dr$$

I don't think this is integrable, but that makes sense based on the way the question was posed.I think it ought to be square integrable though. I tried to compute this using residues - I was hoping to get something analogous to the 1D Fourier transform

$$f(x) = \frac{1}{1 + x^2},
\hat{f}(k) = e^{-2\pi x|k|}$$

but from the look of the residue I have so far it doesn't seem like it will be so aesthetically pleasing. At any rate, thanks for your help, and thanks vela for editing my equation. I've never used LaTex so I was guessing.
I'm not checking the details here, so I hope you are keeping track of all of the signs and factors. But that looks integrable to me. There are poles at i and -i. You'll have to split the sin up into exponentials so you can decide which half-plane to close the contours in, but it looks routine to me.
Ansatz7
Ansatz7 is offline
#5
Mar5-12, 09:52 PM
P: 29
Deleted


Register to reply

Related Discussions
purpose of fourier series and fourier transform Advanced Physics Homework 4
Fourier transform and inverse transform Calculus & Beyond Homework 2
What is the point of Fourier Series if you can do the Fourier Transform? General Math 9
Fourier Series / Fourier Transform Question Electrical Engineering 6
The difference between Fourier Series, Fourier Transform and Laplace Transform General Physics 1