Finding Modes of Vibration in ANSYS

  • Thread starter Thread starter adpr02
  • Start date Start date
  • Tags Tags
    Modes Vibration
AI Thread Summary
To determine the important modes of vibration in ANSYS, focus on the lower frequency modes, as they require less energy to excite compared to higher frequencies. Each mode has an associated natural frequency, and the modes near the excitation frequency are particularly significant. The first nine modes may be below the forcing frequency, but the tenth mode aligns closely with it, making it crucial for analysis. Additionally, modes where the structure exhibits significant movement at the force application point are vital, as greater movement allows for more effective excitation. In transient situations, all lower modes are important, while in steady-state conditions, the focus shifts to those modes near the excitation frequency.
adpr02
Messages
8
Reaction score
0
Hi,

I'm playing around with ANSYS to find the modes of vibration of a structure. How do I know which are the most important modes? I understand that there are infinite modes of vibration - getting higher and higher in frequency.

I'm guessing that it has something to do with the effective mass of each mode versus the total mass.

Also, when people say "Natural Frequency," which mode does that frequency belong to?

Cheers
 
Engineering news on Phys.org
There is a "natural frequency" associated with each mode of vibration. For most purposes, the lower frequency modes will be the important modes, because it takes more and more energy to excite the higher frequency modes.
 
Ok. How do I know how many of the lower modes are important?

The reason I ask is because the first 9 are well below forcing frequency. 10th mode is pretty much bang on the forcing frequency.
 
If your excitation force is a sine wave at a fixed frequency, the important modes are likely to be the ones close to that frequency. It doesn't matter whether that is the first or the 100th mode.

Actually you can improve on that statement by saying the important modes are also those where the structure moves a lot at the point where the force is acting, because theo more the structure can move, the more work force can do to excite that mode (work = force x distance).
 
In a transient situation, all of the lower modes are important. In steady state, it is more as AlephZero has described. Remember also that an excitation acting at a nodal point of a particular mode cannot excite that mode, no matter what the extent of frequency alignment.
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...

Similar threads

Back
Top