Why such strange units of measure?

AI Thread Summary
Astronomers and cosmologists prefer using the Distance Modulus and temperature over traditional distance measures like Bly or Mpc due to the logarithmic nature of these units, which simplifies communication across vast distances. The Distance Modulus can sometimes misrepresent actual distances, particularly when uncorrected for extinction, while redshift also has limitations based on cosmological models. The Cosmic Microwave Background (CMB) is discussed in terms of temperature because its spectrum reflects the blackbody radiation of the original plasma, rather than just the distance it has traveled. This approach can lead to confusion, as the term "microwave" may imply energetic particles rather than a measurement of temperature. Ultimately, the focus on fluctuations in the CMB is more significant than the absolute temperature itself.
JArnold
Messages
21
Reaction score
3
Why do astronomers and cosmologists prefer to use the Distance Modulus instead of -- rather than in addition to -- Bly (billion light-years) or Mpc (mega parsecs)? Being a LOG10 it distorts relative distances. You can find Bly plotted on a graph (but not specified), and even in studies comparing z with distances according to standard candles, you won't find tables listing z alongside metric distances.

Why do astronomers and cosmologists prefer to use "temperature" rather than redshift when discussing CMB (cosmic microwave background radiation)? Why not either call it "cosmic temperature background" or specify the length of the microwave? Space being a vacuum, it seems unnecessarily weird to talk of temperature.
 
Space news on Phys.org
The fact that it's logarithmic is exactly why it's used; in astronomy, we are often talking about things on huge ranges of distance scales, so carrying around (or even saying) big units is ungainly. Also, from a technical standpoint, distance modulus doesn't always correspond to actual distance (in case we are discussing one that is uncorrected for extinction) and redshift doesn't always correspond to actual distance either (because strictly speaking, the distance inferred is based on how accurate our cosmological models are).

As for the CMB, the shape of the spectrum is that of blackbody radiation, and the spectrum for blackbody radiation is entirely dependent on the temperature of what's radiating.

http://en.wikipedia.org/wiki/Black-body_radiation#Planck.27s_law_of_black-body_radiation
 
I can understand using both, and that all extreme distant measures are more or less inaccurate. But to go from distance modulus to Mly is only to go from 2 digits to 4 or 5, and though a LOG10 might reduce relative inaccuracies (only because it's a LOG10 reduction), to telescope relative distances is itself to impose an inaccuracy. What's especially frustrating to me is that I've seen Hubble diagrams that plot z against Mpc, I've never found a corresponding table that speicifies the data points.

Regarding the CMB, isn't what's most significant about it not the temperature of the source but how long it's been traveling? Doesn't it invite confusion to use the term "microwave" but measure it as a temperature? Doesn't it suggest that what's being measured is energetic particles, as-if remnants of the original plasma?
 
JArnold said:
I can understand using both, and that all extreme distant measures are more or less inaccurate. But to go from distance modulus to Mly is only to go from 2 digits to 4 or 5, and though a LOG10 might reduce relative inaccuracies (only because it's a LOG10 reduction), to telescope relative distances is itself to impose an inaccuracy. What's especially frustrating to me is that I've seen Hubble diagrams that plot z against Mpc, I've never found a corresponding table that speicifies the data points.

You can calculate the distances in Mpc quite straightforwardly if you know the value of Hubble parameter. You need to remember though, that this is the luminosity distance, which is different from angular diameter distance, which is different from comoving distance.


JArnold said:
Regarding the CMB, isn't what's most significant about it not the temperature of the source but how long it's been traveling? Doesn't it invite confusion to use the term "microwave" but measure it as a temperature? Doesn't it suggest that what's being measured is energetic particles, as-if remnants of the original plasma?

Well, it's not the absolute temperature which is interesting, but the fluctuations. At least I recall seeing redshift given more often than the absolute temperature.

The point kind of is that what is being measured is exactly the remnants of the original plasma. As the plasma was tightly coupled with photons, you see exactly (modulo the changes happening while photons travel through the universe) the temperature of the original plasma.
 
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top