Normal modes and system's energy

AI Thread Summary
The energy of a system can be expressed as the sum of the energies of its normal modes due to the orthogonality of mode shapes. When a system is excited, its motion can be represented as a linear combination of these modes, allowing for a straightforward calculation of total energy. The mathematical proof of orthogonality relies on linear algebra, demonstrating that the inner products of different modes yield zero when mass and stiffness matrices are symmetric. This principle simplifies the analysis of complex motions, such as those in vibrating systems, by enabling predictions based on fundamental and harmonic frequencies. Understanding this concept is crucial for practical engineering applications, even if the detailed proof is not always necessary.
Tosh5457
Messages
130
Reaction score
28
Hi, why does the energy of the system equals the sum of the energy of the modes? The book I'm reading only states it, it doesn't prove it.
 
Physics news on Phys.org
The motion/excitation/configuration of a system, whatever it is (you don't say), can always be expressed as a sum of normal modes. An example: lift a guitar string at one point so the string displacement is triangular, and let go. Subsequent motion is extremely complicated, but it can be expressed as a sum of sinusoidal displacements at the fundamental and harmonic frequencies that are relatively easy to predict from a Fourier decomposition of the initial triangular excitation. Since the normal mode expansion describes the "actual" displacement, the sum of its energies equals the total energy of the system.
 
The matiematical reason is that the mode shapes are orthogonal. If ##x_i## amd ##x_j## are two different modes (## i \ne j##), then ##x_i^TMx_j = 0## and ##x_i^TKx_j = 0## where ##M## and ##K## are the system mass and stiffness matrices.

You can express any motion of the system as a linear combination of all the modes, i.e.
$$x = \sum_i a_i x_i.$$ So the total strain energy of the system is
$$x^T K x/2 = (\sum_i a_ix_i)^T K (\sum_j a_j x_j)/2
= \sum_i\sum_j (a_ia_jx_i^T K x_j)/2 = \sum_i (a^2_i x_i^T K x_i)/2$$because the only non-zero terms are when ##i = j##. The same is true for the kinetic energy.

The math proof that the modes are orthogonal requires quite a bit of linear algebra, and may be just assumed, or demonstrated by a numerical example, in a first course in dynamics. For practical engineering work, knowing the result is true is a lot more important than knowing how to prove it!
 
AlephZero said:
The math proof that the modes are orthogonal requires quite a bit of linear algebra...

It's easy to show this for the special case of two modes with different frequencies, if you assume the mass and stiffness matrices are symmetric. (None of those assumptions are necessary, but the proof without them is much harder).

For the two modes we have ##Mx_i + \omega_i^2Kx_i = 0## and ##Mx_j + \omega_j^2Kx_j = 0##.

Multiply the first equation by ##x_j^T## and the second by ##x_i^T##:
##x_j^TMx_i + \omega_i^2x_j^TKx_i = 0## and ##x_i^TMx_j + \omega_j^2x_i^TKx_j = 0##.
If M and K are symmetric, ## x_j^TMx_i = x_i^TMx_j ## and ## x_j^TKx_i = x_i^TKx_j ##.
So by subtracting the two equations we get ##(\omega_i^2 - \omega_j^2)x_i^TKx_j =0##.

If the two frequencies are different, this means that ##x_i^TKx_j = 0##, and back substituting, ##x_i^TMx_j = 0##.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...

Similar threads

Back
Top