Thermodynamics: determining potentials

Chiborino
Messages
19
Reaction score
0

Homework Statement


Consider an imaginary substance which is characterized by thermal energy
U=\frac{NS^2}{V^2}

(a) Determine the Helmholtz free energy F(T, V).
(b) Determine the Gibbs free energy G(T, p).
(c) Determine the enthalpy H(S, p)

Homework Equations


F=U-TS (maybe dF = dU - sdT = -pdV - sdT?)
G=U-TS+pV = F+pV (dG = -sdT + Vdp
H=U+pV (dH = TdS + Vdp)

The Attempt at a Solution


I'm really lost when it comes to this. My professor hasn't done any examples with this sort of problem, the book doesn't have anything like this in it, and I can't find a problem similar online anywhere. So my best guess is to just throw the N(S/V)^2 into the potential formula for each problem and circle it. But I get the feeling that F(T,V) =N(S/V)^2 -TS isn't a valid answer. A quick explanation of how to proceed would be extremely helpful.
 
Physics news on Phys.org
The energy U(S,V) is a function of S and V while the Helmholtz free energy F(T,V) is a function of T and V. To go from U to F, you're replacing the variable S with its conjugate, T. This is what's called a Legendre transform.

If you differentiate U, you get
$$dU = \frac{\partial U}{\partial S} dS + \frac{\partial U}{\partial V} dV.$$ Comparing this to the first law of thermodynamics, ##dU = T\,dS-p\,dV##, you can see that ##T = \frac{\partial U}{\partial S}## and ##p = -\frac{\partial U}{\partial V}##. The first one is the one you want because you want to replace S with T.

For part a, start by differentiating U with respect to S to find T in terms of S and V. Invert that to find S in terms of T and V. You should get ##S = \frac{TV^2}{2N}##. Then use this to eliminate S from the expression
$$F = U - TS = \frac{NS^2}{V^2} - TS.$$ In the end, you should have ##F(V,T)=-\frac{V^2T^2}{4N}##.

To find Gibbs free energy G, note that you're starting with F and replacing V by p. Similarly, to find the enthalpy H, you're starting with G and replacing T by S. You follow the same basic procedure each time.
 
Last edited:
Thank you!
That's such an easy problem, I don't know why professor blew over the concept in class.
I don't know if you feel like checking me over, but for G I got \frac{3Np^2}{T^2} and the algebra's giving me trouble for H. I got p= -(dU/dV)= \frac{2NS^2}{V^3}, then V=(\frac{2NS^2}{p})^{\frac{1}{3}}
 
Last edited:
I got ##G = \frac{Np^2}{T^2}##. I think you made a sign error somewhere.

I got ##H = 3\left(\frac{N S^2 p^2}{4}\right)^{1/3}##. Your expressions for p and V match what I found.
 
I got two separate cube root expressions for H, but I see how I can factor out a 2 to combine them into what you have. And yes, I spotted the sign error. Thank you again for the help. :)
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top