Finding the area of trapezoid area question

  • Thread starter Thread starter nemesest
  • Start date Start date
  • Tags Tags
    Area Trapezoid
nemesest
Messages
3
Reaction score
0
(double integral) cos((y-x)/(y+x))dA
Where the double integral is over the region with points (1, 0), (2, 0), (0, 2), and (0, 1).
I think the trapezoid is enclosed by
y+x = 1
y+x = 2
y=0
x=0
How can I use this? Thanks
 
Physics news on Phys.org
Hello nemesest, for this problem, you can make a substitution u=y-x, v=y+x, compute the Jacobian, and express the integral in terms of u and v (don't forget that the final representation of the integral must involve the Jacobian). The result is (3/2)*sin1. Hope that helps :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top