Register to reply

Infinite Integration of Fick's Second Law

by DiffUser2349
Tags: diffusion, fick, integration
Share this thread:
DiffUser2349
#1
Jul14-13, 05:20 PM
P: 2
Hi everyone!

Recently, I've been trying to understand how the error function pertains to solving for concentration in a non-steady state case (with a constant diffusivity D), but I've been having some trouble with the initial assumptions. The source I am currently using (Crank's The Mathematics of Diffusion) claims that, for a the case of a plane source,

C = A/sqrt(t) * exp(-(x^2)/4Dt)

Where C is the concentration (with respect to position and time), x is the position (assuming one dimension only), t is the time, and A is an arbitrary constant, which is a solution for Fick's Second Law (dC/dt = D (d2C/dx2)). Crank (as well another source I've been using <http://www.eng.utah.edu/~lzang/images/lecture-4.pdf>) claim that this is solvable by integrating Fick's Second Law, but whether I am making a mistake or otherwise not understanding the concept, I can't seem to get this result to work. Could someone help me with this, either by providing the math, or a source which has this derivation? Thanks again.
Phys.Org News Partner Physics news on Phys.org
Vibrational motion of a single molecule measured in real time
Researchers demonstrate ultra low-field nuclear magnetic resonance using Earth's magnetic field
Bubbling down: Discovery suggests surprising uses for common bubbles
Chestermiller
#2
Jul14-13, 06:00 PM
Sci Advisor
HW Helper
Thanks
PF Gold
Chestermiller's Avatar
P: 5,177
Quote Quote by DiffUser2349 View Post
Hi everyone!

Recently, I've been trying to understand how the error function pertains to solving for concentration in a non-steady state case (with a constant diffusivity D), but I've been having some trouble with the initial assumptions. The source I am currently using (Crank's The Mathematics of Diffusion) claims that, for a the case of a plane source,

C = A/sqrt(t) * exp(-(x^2)/4Dt)

Where C is the concentration (with respect to position and time), x is the position (assuming one dimension only), t is the time, and A is an arbitrary constant, which is a solution for Fick's Second Law (dC/dt = D (d2C/dx2)). Crank (as well another source I've been using <http://www.eng.utah.edu/~lzang/images/lecture-4.pdf>) claim that this is solvable by integrating Fick's Second Law, but whether I am making a mistake or otherwise not understanding the concept, I can't seem to get this result to work. Could someone help me with this, either by providing the math, or a source which has this derivation? Thanks again.
Substitute [itex]C(x,t)=\frac{A}{\sqrt{t}}f(\eta)[/itex] into the partial differential equation for Fick's second law, where
[tex]\eta=\frac{x}{2\sqrt{Dt}}[/tex]
By doing this, the partial differential equation should reduce to an ordinary differential equation to solve for f and a function of [itex]\eta[/itex]. This yields a so-called similarity solution.

I think a better book to use than Crank would be Transport Phenomena by Bird, Stewart, and Lightfoot. You may have to look in the chapters on heat transfer, since diffusion problems using Ficks second law are mathematical analogs of unsteady state conductive heat transfer problems.


Register to reply

Related Discussions
Infinite Integration of Fick's Second Law General Engineering 0
Integration of an infinite product Calculus 4
Integration to infinite General Math 6
Infinite series by integration by parts General Math 3
Infinite Differentiation and Integration? General Math 3