Arc length of a regular parametrized curve

AI Thread Summary
The arc length of a regular parametrized curve is defined as s(t) = ∫ from t_0 to t of |α'(t)| dt, where |α'(t)| represents the magnitude of the derivative vector. The derivative of arc length with respect to the parameter t is given by ds/dt = |α'(t)|, indicating that if the parameter t itself represents arc length, then ds/dt equals 1. This implies that when |α'(t)| = 1, the arc length simplifies to s = t - t_0. Clarification is needed if there is confusion regarding the conditions under which ds/dt equals 1. Understanding these relationships is crucial for working with parametrized curves in three-dimensional space.
tuggler
Messages
45
Reaction score
0
Given t\in Ithe arc length of a regular parametrized curve \alpha : I \to \mathbb{R}^3 from the point t_0 is by definition s(t) = \int^t_{t_0}|\alpha'(t)|dt where |\alpha'(t)| = \sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2} is the length of the vector \alpha'(t). Since \alpha'(t) \ne 0 the arc length s is a differentiable function of and ds/dt = |\alpha'(t)|.

This is where I get confused.

It can happen that the parameter tis already the arc length measured from some point. In this case, ds/dt = 1 =|\alpha&#039;(t)|[/tex]. Conversely, if |\alpha&amp;#039;(t)| = 1 then s = \int_{t_0}^t dt = t - t_0.<br /> <br /> How did they get that it equals 1? I am not sure what they are saying?
 
Mathematics news on Phys.org
Opps, I am in the wrong thread. How can I delete this?
 
tuggler said:
Given t\in Ithe arc length of a regular parametrized curve \alpha : I \to \mathbb{R}^3 from the point t_0 is by definition s(t) = \int^t_{t_0}|\alpha&#039;(t)|dt where |\alpha&#039;(t)| = \sqrt{(x&#039;(t))^2+(y&#039;(t))^2+(z&#039;(t))^2} is the length of the vector \alpha&#039;(t). Since \alpha&#039;(t) \ne 0 the arc length s is a differentiable function of and ds/dt = |\alpha&#039;(t)|.

This is where I get confused.

It can happen that the parameter tis already the arc length measured from some point. In this case, ds/dt = 1 =|\alpha&#039;(t)|[/tex]. Conversely, if |\alpha&amp;#039;(t)| = 1 then s = \int_{t_0}^t dt = t - t_0.<br /> <br /> How did they get that it equals 1? I am not sure what they are saying?
<br /> <br /> If t is arc length (that is: s = t), then ds/dt = 1. If this doesn&#039;t answer your question you need to elaborate.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top