Expectation Value of Momentum for Wavepacket

torq123
Messages
8
Reaction score
0

Homework Statement



What is the average momentum for a packet corresponding to this normalizable wavefunction?

\Psi(x) = C \phi(x) exp(ikx)

C is a normalization constant and \phi(x) is a real function.

Homework Equations


\hat{p}\rightarrow -i\hbar\frac{d}{dx}

The Attempt at a Solution



\int\Psi(x)^{*}\Psi(x)dx = \int C^2 \phi(x)^{2}dx= 1

Plugging in the momentum operator and using the chain rule:

<\hat{p}> = \hbar k \int C^2 \phi(x)^2 dx - i \hbar \int C^2 \phi^{'}\phi dx

The second term is always imaginary since \phi(x) is real, so I said the momentum is \hbar k which I think might be right, but for the wrong reasons? I didn't think Hermetian operators could give imaginary expectation values...
 
Physics news on Phys.org
torq123 said:
<\hat{p}> = \hbar k \int C^2 \phi(x)^2 dx - i \hbar \int C^2 \phi^{'}\phi dx

The second term is always imaginary since \phi(x) is real, so I said the momentum is \hbar k which I think might be right, but for the wrong reasons? I didn't think Hermetian operators could give imaginary expectation values...
Try working on the 2nd term a bit more. Hint: use integration by parts.
 
Are you saying that the second term must be zero since \phi vanishes at ±∞ and the integral evaluates to \phi^2(x)/2? That makes sense to me.
 
torq123 said:
Are you saying that the second term must be zero since \phi vanishes at ±∞ and the integral evaluates to \phi^2(x)/2?
That's the idea.
 
Awesome. Thanks for the help.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?

Similar threads

Back
Top