Impulse and maximum height of a particle

AI Thread Summary
A particle experiences an upward impulse from a force described by F = -8t² + 8t over 1 second. The impulse calculated is 4/3, which leads to a final velocity of v = 3m/4, assuming the mass is m. To find the maximum height, the formula h_max = v²/(2g) is used, resulting in h_max = 9m²/(32g). The discussion emphasizes using the impulse-momentum theorem rather than taking the derivative of the force. The final height expression is presented in terms of the particle's mass and gravitational acceleration.
thaalescosta
Messages
11
Reaction score
0

Homework Statement


A particle receives an impulse that lasts 1s, coming from a upwards vertical force. This force is given by the following equation: F = -8t²+8t.

What is the maximum height reached by the particle?

Homework Equations



F = -8t²+8t

The Attempt at a Solution



\int(-8t²+8t)dt = (-8t³ +12t²)/3

When t = 1s, I = 4/3. That's what I got as my impulse.

For the maximum height, I took the derivative of F and set it = 0, finding that t = 1/2

Now I don't know how to find the height with all the information I have.
 
Physics news on Phys.org
thaalescosta said:

Homework Statement


A particle receives an impulse that lasts 1s, coming from a upwards vertical force. This force is given by the following equation: F = -8t2+8t.

What is the maximum height reached by the particle?


Homework Equations



F = -8t²+8t

The Attempt at a Solution



\int(-8t^2+8t)dt = (-8t^3 +12t^2)/3

When t = 1s, I = 4/3. That's what I got as my impulse.

For the maximum height, I took the derivative of F and set it = 0, finding that t = 1/2

Now I don't know how to find the height with all the information I have.
Hello thaalescosta. Welcome to PF !

(Use ^2 for an eponent of 2 in Latex.)

There's no need to use the derivative of the force, F.

The change in momentum of the particle is equal to the impulse. (Impulse - Momentum Theorem)


Do you know the mass of the particle?
 
SammyS said:
Hello thaalescosta. Welcome to PF !

(Use ^2 for an eponent of 2 in Latex.)

Got it :)

There's no need to use the derivative of the force, F.

The change in momentum of the particle is equal to the impulse. (Impulse - Momentum Theorem)


Do you know the mass of the particle?

So I = ΔP = P_{f} - P_{i} = ∫Fdt, from i to f

My impulse turned out to be 4/3.

The mass of the particle wasn't given. I'm guessing that the answer will be in general terms.

If I = m.v, then v = 3m/4

And if the maximum height is
h_{max} = v²/2g
then
h_{max} = 9m²/32g


Does this make sense?
 
thaalescosta said:
Got it :)



So I = ΔP = P_{f} - P_{i} = ∫Fdt, from i to f

My impulse turned out to be 4/3.

The mass of the particle wasn't given. I'm guessing that the answer will be in general terms.

If I = m.v, then v = 3m/4

And if the maximum height is
h_{max} = v²/2g
then
h_{max} = 9m²/32g

Does this make sense?
Yes.

You probably should enclose the entire denominator in parentheses.

h_{max} = v^2/(2g)

h_{max} = 9m^2/(32g)
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top