Trouble with self-energy formula

  • Thread starter Thread starter aguycalledwil
  • Start date Start date
  • Tags Tags
    Formula
AI Thread Summary
The discussion centers on calculating the self-energy of a uniformly charged sphere of radius a, specifically the work required to assemble such a charge distribution. The initial formula proposed involves the integral of charge density and potential, but the user struggles to identify the correct potential function. The correct potential for a uniformly charged sphere is derived using Poisson's equation, leading to a specific expression for the potential inside and outside the sphere. The final self-energy is calculated as E_em = (4/15) (π/ε₀) ρ² a⁵, confirming the energy needed to assemble the sphere. The conversation highlights the importance of understanding electrostatic potential in this context.
aguycalledwil
Messages
36
Reaction score
0
Hi everyone,

I'm having a little difficulty trying to calculate the self-energy of a uniformly charged sphere of radius a. That is, the work done in assembling such a distribution of charge. It is to my understanding that

0.5*integral(ρ*ø(r)dV)

should produce the answer, with ρ being the charge density (constant), ø(r) being some potential, and V being the volume of the sphere. However, I can't figure out what this potential is. Should it be the potential of a spherical shell, ie. Q/(4*pi*epsi0*[r^2])? I tried this but can't get the corrent answer out.

Many thanks in advance,

Will
 
Physics news on Phys.org
Of course, you have to solve for the electrostatic potential for the given charge distribution.

The potential obeys Poisson's equation (in Heaviside-Lorentz units)
\Delta \Phi=-\rho.
This we write in spherical coordinates. Due to symmetry we can assume that \Phi=\Phi(r) is a function of r only. That simplifies the equation to
\frac{1}{r} \partial_r^2 \left (r \Phi \right)=\rho.
For r<a we have \rho=\text{const}. This gives
(r \Phi)''=\rho r \; \Rightarrow \; (r \Phi)'=-\frac{\rho}{2} r^2+C_1\; \Rightarrow \; \Phi(r)=-\frac{\rho}{6} r^2 + C_1+\frac{C_2}{r}.
Since the potential is continuous at the origin we must have C_2=0.

For r>a we have \rho=0. There we have
\Phi(r)=C_1'+\frac{C_2'}{r}.
Since we want to define the potential to vanish for r \rightarrow \infty we get C_1'=0. Further the total charge must be Q=4 \pi a^3 \rho/3 we find
C_2'=Q/(4 \pi).
Finally the potential must be continuous at r=a which gives
-\frac{\rho}{6} a^2+C_1=\frac{Q}{4 \pi a}=\frac{a^2 \rho}{3} \; \Rightarrow \; C_1=\frac{a^2 \rho}{2}.
Integrating gives
E_{\text{em}}=2 \pi \rho \int_0^{a} \mathrm{d} r r^2 \Phi(r)=\frac{4}{15} \pi \rho^2 a^5.
You get the same result using directly the electric field, which is given by
\vec{E}_r=-\Phi'(r) \vec{e}_r:
E_{\text{em}}=\frac{1}{2} 4 \pi \int_0^{\infty} \mathrm{d} r r^2 \vec{E}^2.
 
By elementary methods, consider building up the sphere in thin shells. When the sphere's radius is r, the potential at its surface is \frac{1}{4 \pi \epsilon_0 r} \frac{4}{3}\pi r^3 \rho. So the potential energy of the outer shell (all at distance r from centre) is its charge multiplied by the potential we've just written, that is:
\frac{1}{4 \pi \epsilon_0 r} \frac{4}{3}\pi r^3 \rho \times 4 \pi r^2 dr\ \rho\ \ =\ \frac{4}{3} \frac{\pi}{\epsilon_0} \rho^2 r^4 dr.
So imagining the sphere to be assembled shell by shell, the total energy needed to do this is
\int_{0}^{a}\frac{4}{3} \frac{\pi}{\epsilon_0} \rho^2 r^4 dr \ = \ \frac{4}{15} \frac{\pi}{\epsilon_0} \rho^2 a^5.
 
aguycalledwil said:
I'm having a little difficulty trying to calculate the self-energy of a uniformly charged sphere of radius a. [...] It is to my understanding that

0.5*integral(ρ*ø(r)dV)

should produce the answer, with ρ being the charge density (constant), ø(r) being some potential, and V being the volume of the sphere. However, I can't figure out what this potential is. Should it be the potential of a spherical shell, ie. Q/(4*pi*epsi0*[r^2])?

No, you want the electrostatic potential (as a function of r) produced by a uniformly charged sphere, matching your original problem statement.

Finding this potential is a standard exercise in intermediate-level undergraduate E&M courses, and you will find a Google search on "potential of a uniformly charged sphere" to be fruitful. I see a whole group of hits on threads from Physics Forums alone! :biggrin:
 
Thanks for the responses, these have been more than helpful!
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Back
Top