Negative refraction, meta materials, no quest for chemists?

AI Thread Summary
The discussion centers on the advancements and challenges in the field of negative refraction and meta-materials, highlighting the historical context from early predictions by Soviet physicists and Veselago's foundational work. Pendry's contributions in the early 2000s reignited interest, demonstrating that these materials could act as perfect lenses, surpassing traditional resolution limits. The conversation notes a divide between physicists using conventional optics methods and electrotechnicians focused on miniaturizing structures for practical applications. A significant point raised is the lack of involvement from chemists in developing these materials, despite potential synthesis methods available through supramolecular chemistry and the exploration of optically active crystals. The discussion seeks to identify any chemistry groups actively researching this area, referencing recent articles that suggest possible chemist contributions but noting a general absence of chemists in the field.
DrDu
Science Advisor
Messages
6,421
Reaction score
1,003
Recently, I have read a lot about the physics behind negative refraction, super lenses, meta-materials and the like and I think I understood the theory to quite some detail.
Negative refraction was predicted first by sowiet physicists around Mandelshtam [1,2], and, a paper by Veselago [3,4], who predicted a plain sheet of these materials to act like a lens. This work was quite forgotten until Pendry [5] showed in the new century that these "Veselago lenses" may even act as perfect lenses which circumvent resolution criteria. Pendry also constructed some devices which act like a negative index material for microwaves. Since then numerous papers have appeared and there seems to be some war between physicists who treat this with methods from traditional optics, and electrotechnitians, who try to construct smaller and smaller microstructures to achieve the effect.
Although work from the 1960ies looked for this effect in ordinary crystals, like sodium uranyl acetate, in recent articles, it is taken for granted that negative refraction is an effect which requires "meta-materials", which have to be constructed with methods as used in the production of microchips and are very expensive.
As a chemist I wonder why no chemists take up the gauntlet? After all, there seem to be many methods to potentially synthesize such substances, like supramolecular chemistry.
Another possible route would be via crystals of high optical activity but being optical isotropic, like the uranyl compound mentioned at the beginning.
Or does anybody know of chemistry groups working on that field?

1. Agranovich, Vladimir M., and Yu N. Gartstein. "Spatial dispersion and negative refraction of light." Physics-Uspekhi 49.10 (2006): 1029.

2. Agranovich, Vladimir M., and Vitaly Ginzburg. Crystal optics with spatial dispersion, and excitons. Springer, 1984.

3. Veselago, Victor Georgievich. "THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF IMG align= ABSMIDDLE alt= ϵ eps/IMG AND μ." Physics-Uspekhi 10.4 (1968): 509-514.

4. Veselago, Victor, et al. "Negative refractive index materials." Journal of Computational and Theoretical Nanoscience 3.2 (2006): 189-218.

5. Pendry, John Brian. "Negative refraction makes a perfect lens." Physical review letters 85.18 (2000): 3966.
 
Chemistry news on Phys.org
Nevertheless I think this is an approach which tries to mimic the systems studied in the microwave regions.
I would have expected chemists to come up with other candidates for highly chiral and isotropic substances.
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...

Similar threads

Back
Top