Does the Thomson Model of the Atom Fail at Large or Small Scattering Angles?

AI Thread Summary
The Thomson model of the atom predicts minimal deflection of alpha particles, suggesting less than 1 degree of scattering. However, experimental results, particularly those from Rutherford's scattering experiments, show that significant deflections occur, especially at large angles. The discussion indicates that the Thomson model fails to account for large angle scattering, while it does not fail at small angles where some deflections are observed. The confusion arises from the relationship between the predictions of the Thomson model and the actual scattering data. Ultimately, the Thomson model is inadequate for explaining large angle scattering observed in experiments.
ColdFusion85
Messages
141
Reaction score
0
I am to explain whether the Thomson model of the atom fails at large scattering angles or at small ones...I obviously don't want the answer, but just some hints as to how I would determine this. Thanks in advance.

I know that the Thomson model predicts that there should be less than 1 degree of deflection for the alpha particles as they pass through the foil, and the Rutherford scattering formula shows that the number of particles that get deflected with respect to their scattering angle decreases as the scattering angle increases...so I am inclined to think that the Thomson model fails for large scattering angles...but the Rutherford formula clearly shows that most particles do get deflected at smaller angles, albeit not 1 degree...so isn't this agreeing with Thomson anyway? I am confused, please help.
 
Physics news on Phys.org
ColdFusion85 said:
I am to explain whether the Thomson model of the atom fails at large scattering angles or at small ones...I obviously don't want the answer, but just some hints as to how I would determine this. Thanks in advance.

I know that the Thomson model predicts that there should be less than 1 degree of deflection for the alpha particles as they pass through the foil, and the Rutherford scattering formula shows that the number of particles that get deflected with respect to their scattering angle decreases as the scattering angle increases...so I am inclined to think that the Thomson model fails for large scattering angles...but the Rutherford formula clearly shows that most particles do get deflected at smaller angles, albeit not 1 degree...so isn't this agreeing with Thomson anyway? I am confused, please help.
I think the question is asking: what observed scattering angles does the Thomson model fail to predict?

AM
 
Anyone else? Please help, this is due this afternoon.
 
ColdFusion85 said:
Anyone else? Please help, this is due this afternoon.
It is not that difficult. If the Thomson model predicts small scattering angles and experiment shows that some alpha particles are deflected at small scattering angles, then it doesn't fail at small scattering angles. What the Thomson model does not predict or explain is an alpha particle scattering at large angles. Thomson's model, then, fails to predict the large angle scattering that was actually observed by Rutherford.

AM
 
is anybody having details of
structure of atom
nuetrons
protons
electrons
thomas model of atom
rutherford model of atom
bohr model of atom
atoms molecules
valencies table
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top