Electronegativity

Electronegativity, symbolized as χ, is the tendency of an atom to attract shared electrons (or electron density) to itself. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. The opposite of electronegativity is electropositivity: a measure of an element's ability to donate valence electrons.
On the most basic level, electronegativity is determined by factors like the nuclear charge (the more protons an atom has, the more "pull" it will have on electrons) and the number and location of other electrons in the atomic shells (the more electrons an atom has, the farther from the nucleus the valence electrons will be, and as a result, the less positive charge they will experience—both because of their increased distance from the nucleus and because the other electrons in the lower energy core orbitals will act to shield the valence electrons from the positively charged nucleus).
The term "electronegativity" was introduced by Jöns Jacob Berzelius in 1811,
though the concept was known before that and was studied by many chemists including Avogadro.
In spite of its long history, an accurate scale of electronegativity was not developed until 1932, when Linus Pauling proposed an electronegativity scale which depends on bond energies, as a development of valence bond theory. It has been shown to correlate with a number of other chemical properties. Electronegativity cannot be directly measured and must be calculated from other atomic or molecular properties. Several methods of calculation have been proposed, and although there may be small differences in the numerical values of the electronegativity, all methods show the same periodic trends between elements.
The most commonly used method of calculation is that originally proposed by Linus Pauling. This gives a dimensionless quantity, commonly referred to as the Pauling scale (χr), on a relative scale running from 0.79 to 3.98 (hydrogen = 2.20). When other methods of calculation are used, it is conventional (although not obligatory) to quote the results on a scale that covers the same range of numerical values: this is known as an electronegativity in Pauling units.
As it is usually calculated, electronegativity is not a property of an atom alone, but rather a property of an atom in a molecule. Properties of a free atom include ionization energy and electron affinity. It is to be expected that the electronegativity of an element will vary with its chemical environment, but it is usually considered to be a transferable property, that is to say that similar values will be valid in a variety of situations.
Caesium is the least electronegative element (0.79); fluorine is the most (3.98).

View More On Wikipedia.org
  • 40

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,443
    • Media
      227
    • Reaction score
      10,021
    • Points
      1,237
  • 1

    cosmichorizon

    A PF Quark
    • Messages
      5
    • Reaction score
      0
    • Points
      1
  • 1

    DiMer

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • 1

    grgrlee

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • 1

    Wrichik Basu

    A PF Moon From Kolkata, India
    • Messages
      2,116
    • Media
      3,122
    • Albums
      1
    • Reaction score
      2,691
    • Points
      507
  • 1

    CGandC

    A PF Molecule
    • Messages
      326
    • Reaction score
      34
    • Points
      73
  • Back
    Top