Maxwell's equations

Maxwell's equations are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits.
The equations provide a mathematical model for electric, optical, and radio technologies, such as power generation, electric motors, wireless communication, lenses, radar etc. They describe how electric and magnetic fields are generated by charges, currents, and changes of the fields. The equations are named after the physicist and mathematician James Clerk Maxwell, who, in 1861 and 1862, published an early form of the equations that included the Lorentz force law. Maxwell first used the equations to propose that light is an electromagnetic phenomenon.
An important consequence of Maxwell's equations is that they demonstrate how fluctuating electric and magnetic fields propagate at a constant speed (c) in a vacuum. Known as electromagnetic radiation, these waves may occur at various wavelengths to produce a spectrum of light from radio waves to gamma rays.
The equations have two major variants. The microscopic equations have universal applicability but are unwieldy for common calculations. They relate the electric and magnetic fields to total charge and total current, including the complicated charges and currents in materials at the atomic scale. The macroscopic equations define two new auxiliary fields that describe the large-scale behaviour of matter without having to consider atomic scale charges and quantum phenomena like spins. However, their use requires experimentally determined parameters for a phenomenological description of the electromagnetic response of materials.
The term "Maxwell's equations" is often also used for equivalent alternative formulations. Versions of Maxwell's equations based on the electric and magnetic scalar potentials are preferred for explicitly solving the equations as a boundary value problem, analytical mechanics, or for use in quantum mechanics. The covariant formulation (on spacetime rather than space and time separately) makes the compatibility of Maxwell's equations with special relativity manifest. Maxwell's equations in curved spacetime, commonly used in high energy and gravitational physics, are compatible with general relativity. In fact, Albert Einstein developed special and general relativity to accommodate the invariant speed of light, a consequence of Maxwell's equations, with the principle that only relative movement has physical consequences.
The publication of the equations marked the unification of a theory for previously separately described phenomena: magnetism, electricity, light and associated radiation.
Since the mid-20th century, it has been understood that Maxwell's equations do not give an exact description of electromagnetic phenomena, but are instead a classical limit of the more precise theory of quantum electrodynamics.

View More On Wikipedia.org
  • 221

    Greg Bernhardt

    A PF Singularity From USA
    • Messages
      19,443
    • Media
      227
    • Reaction score
      10,021
    • Points
      1,237
  • 2

    Delta2

    A PF Asteroid 50 From Athens,Greece
    • Messages
      6,002
    • Reaction score
      2,625
    • Points
      407
  • 2

    Robsta

    A PF Electron
    • Messages
      88
    • Reaction score
      0
    • Points
      11
  • 1

    JasonHathaway

    A PF Electron
    • Messages
      115
    • Reaction score
      0
    • Points
      16
  • 1

    flintbox

    A PF Quark
    • Messages
      10
    • Reaction score
      0
    • Points
      4
  • 1

    jiho.j

    A PF Electron From Korea
    • Messages
      3
    • Reaction score
      0
    • Points
      14
  • 1

    Seinfeld

    A PF Atom
    • Messages
      4
    • Reaction score
      0
    • Points
      31
  • 1

    nomadreid

    A PF Mountain From Israel
    • Messages
      1,670
    • Reaction score
      204
    • Points
      212
  • 1

    Reignbeaux

    A PF Electron
    • Messages
      5
    • Reaction score
      0
    • Points
      14
  • 1

    Aniket1

    A PF Atom 31 From Roorkee, India
    • Messages
      62
    • Reaction score
      2
    • Points
      34
  • 1

    Amaterasu21

    A PF Molecule
    • Messages
      64
    • Reaction score
      17
    • Points
      61
  • 1

    bgq

    A PF Molecule
    • Messages
      162
    • Reaction score
      0
    • Points
      61
  • 1

    Yunjia

    A PF Quark
    • Messages
      4
    • Reaction score
      2
    • Points
      1
  • 1

    greypilgrim

    A PF Cell
    • Messages
      516
    • Reaction score
      36
    • Points
      103
  • 1

    btb4198

    A PF Molecule
    • Messages
      572
    • Reaction score
      10
    • Points
      73
  • 1

    miner_tom

    A PF Atom
    • Messages
      1
    • Reaction score
      1
    • Points
      33
  • 1

    A. Turner

    A PF Quark From Cambridge, MA
    • Messages
      3
    • Reaction score
      0
    • Points
      9
  • 1

    BiGyElLoWhAt

    A PF Organism From Indiana
    • Messages
      1,622
    • Reaction score
      131
    • Points
      172
  • 1

    olgerm

    A PF Molecule
    • Messages
      531
    • Reaction score
      34
    • Points
      89
  • 1

    rabidwolverine

    A PF Quark
    • Messages
      1
    • Reaction score
      0
    • Points
      1
  • Back
    Top