4-Current vector potential transformation under Gauge fixing

In summary, the conversation discusses an initial vector potential in the form of a four-vector. The Lorenz Gauge transformation is applied to this vector potential, resulting in a new four-vector with a gauge condition that can be solved using the retarded Green's function of the d'Alembert operator.
  • #1
George444fg
26
4
I am given an initial vector potential let's say:

\begin{equation}
\vec{A} = \begin{pmatrix}
g(t,x)\\
0\\
0\\
g(t,x)\\
\end{pmatrix}
\end{equation}

And I would like to know how it will transform under the Lorenz Gauge transformation. I know that the Lorenz Gauge satisfy

\begin{equation}
\nabla \cdot A +\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0
\end{equation}
So by applying a gauge transformation to my original expression I obtain that:
\begin{equation}
\tilde{\vec{A}} = \begin{pmatrix}
g(t,x)+\frac{\partial f}{\partial t}(t,x,y,z)\\
\frac{\partial f}{\partial x}(t,x,y,z)\\
\frac{\partial f}{\partial y}(t,x,y,z)\\
g(t,x)+\frac{\partial f}{\partial z}(t,x,y,z)\\
\end{pmatrix}
\end{equation}

That implies that:

\begin{equation}
\frac{1}{c^2}\frac{\partial g}{\partial t}+\frac{1}{c^2}\frac{\partial^2 f}{\partial^2 t}+\frac{\partial^2 f}{\partial^2 x}+\frac{\partial^2 f}{\partial^2 y}+\frac{\partial^2 f}{\partial^2 z} =0
\end{equation}

This expression doesn't help me a lot fixing my gauge. Except in the case that I take the f(t) but then $\partial_t{f} = g(t,x)+const$. But then $\tilde{A}$ gives back a 0 magnetic and electric field which is impossible. Probably I do somewhere a mistake, could you please help me out find out how to solve it?
 
  • Like
Likes Kulkarni Sourabh
Physics news on Phys.org
  • #2
Here's the posting with LaTeX rendering:
George444fg said:
I am given an initial vector potential let's say:

$$\begin{equation}
\vec{A} = \begin{pmatrix}
g(t,x)\\
0\\
0\\
g(t,x)\\
\end{pmatrix}
\end{equation}$$

And I would like to know how it will transform under the Lorenz Gauge transformation. I know that the Lorenz Gauge satisfy

$$\begin{equation}
\nabla \cdot A +\frac{1}{c^2}\frac{\partial\phi}{\partial t}=0
\end{equation}$$
George444fg said:
So by applying a gauge transformation to my original expression I obtain that:
$$ \begin{equation}
\tilde{\vec{A}} = \begin{pmatrix}
g(t,x)+\frac{\partial f}{\partial t}(t,x,y,z)\\
\frac{\partial f}{\partial x}(t,x,y,z)\\
\frac{\partial f}{\partial y}(t,x,y,z)\\
g(t,x)+\frac{\partial f}{\partial z}(t,x,y,z)\\
\end{pmatrix}
\end{equation}$$

That implies that:

$$\begin{equation}
\frac{1}{c^2}\frac{\partial g}{\partial t}+\frac{1}{c^2}\frac{\partial^2 f}{\partial^2 t}+\frac{\partial^2 f}{\partial^2 x}+\frac{\partial^2 f}{\partial^2 y}+\frac{\partial^2 f}{\partial^2 z} =0
\end{equation}$$

This expression doesn't help me a lot fixing my gauge. Except in the case that I take the ##f(t)## but then ##\partial_t{f} = g(t,x)+const##. But then ##\tilde{A}## gives back a 0 magnetic and electric field which is impossible. Probably I do somewhere a mistake, could you please help me out find out how to solve it?
 
  • #3
vanhees71 said:
Here's the posting with LaTeX rendering:
Its my bad, I meant that my original Gauge was in the form:

\begin{equation}
\vec{A} = \begin{pmatrix}
g(t+x)\\
0\\
0\\
g(t+x)\\
\end{pmatrix} = (\Phi, A)
\end{equation}

such that
\begin{equation}
\nabla \cdot A = g'(t+x) \Longrightarrow \Box \chi = g'(t+x)
\end{equation}

Now I apply the Lorenz Gauge to get a solution for A, in the Lorenz gauge.
 
Last edited:
  • #4
I don't understand your notation. Please give your notation for the spacetime four-vector (standard is ##(x^{\mu})=(t,x,y,z)## (with ##c=1##) and also ##(A^{\mu})=(\Phi,\vec{A})##.
 
  • #5
So to write down in the conventional form we have:

\begin{equation}
A^{\mu} = (f(t+y), f(t+y), 0, 0) = (\Phi, A)
\end{equation}
 
  • #6
So you have
$$\partial_{\mu} A^{\mu}=\dot{f}(t+y)$$
If you now want a new four-potential such that the Lorenz gauge condition ##\partial_{\mu} A^{\prime '}=0## is fulfilled you make
$$A_{\mu}'=A_{\mu} + \partial_{\mu} \chi$$
and
$$\partial^{\mu} A_{\mu}' = \dot{f}(t+y)+\Box \chi=0 \; \Rightarrow \; \Box \chi=-\dot{f}(t+y),$$
which you can solve with, e.g., the retarded Green's function of the d'Alembert operator.
 

1. What is a 4-current vector potential transformation?

A 4-current vector potential transformation is a mathematical concept used in quantum field theory to describe the behavior of particles and fields. It involves transforming the vector potential, which is a mathematical quantity used to describe the electromagnetic field, in response to changes in the electric and magnetic fields.

2. What is gauge fixing in relation to 4-current vector potential transformation?

Gauge fixing is the process of choosing a specific mathematical representation, or gauge, for a physical system. In the context of 4-current vector potential transformation, gauge fixing involves choosing a specific mathematical form for the vector potential that simplifies the equations and makes them easier to solve.

3. Why is gauge fixing necessary in 4-current vector potential transformation?

Gauge fixing is necessary in 4-current vector potential transformation because the equations involved can have multiple solutions that are mathematically equivalent but physically different. By choosing a specific gauge, we can eliminate these extra solutions and focus on the most relevant ones.

4. What are some commonly used gauges in 4-current vector potential transformation?

Some commonly used gauges in 4-current vector potential transformation include the Lorenz gauge, Coulomb gauge, and axial gauge. Each of these gauges has its own advantages and is suited for different types of problems.

5. How does 4-current vector potential transformation relate to the electromagnetic field?

4-current vector potential transformation is a mathematical tool used to describe the behavior of the electromagnetic field. It allows us to understand how the vector potential changes in response to changes in the electric and magnetic fields, and how these changes affect the behavior of particles and fields in quantum field theory.

Similar threads

  • Electromagnetism
Replies
1
Views
771
  • Advanced Physics Homework Help
Replies
3
Views
397
Replies
4
Views
765
Replies
9
Views
981
Replies
3
Views
1K
  • Electromagnetism
Replies
8
Views
960
Replies
2
Views
302
  • Electromagnetism
Replies
19
Views
2K
  • Advanced Physics Homework Help
Replies
9
Views
876
Replies
8
Views
745
Back
Top