How to use geometrical symmetries -- general advice? (Vector potential)

  • #1
LeoJakob
21
1
The following is an example from my script. I always have trouble identifying useful symmetries. Can someone explain to me why (for example) the vector potential doesn't have a ##z## dependence? I understand that there is no ##\varphi## dependency.
I don't understand why the field of ##\vec{A}## has to be parallel to the ##z## axis. What about ##d^{3} \overrightarrow{r^{\prime}}##??? Is there a way to show mathematically that the vector potential is independent of the two variables ##z\varphi##?
In general, I have problems identifying symmetries and using them correctly.

Magnetic flux density of an infinitely long hollow cylinder

The hollow cylinder is homogeneously traversed by the current ##I##. Calculate the magnetic flux ##\vec{B}(\vec{r})## as the curl of the vector potential ##\vec{A}(\vec{r})##.

$$
\begin{aligned}
\vec{A}(\vec{r}) & =\frac{\mu_{0}}{4 \pi} \int \limits_{V} \frac{\vec{j}\left(\overrightarrow{r^{\prime}}\right)}{\left|\vec{r}-\overrightarrow{r^{\prime}}\right|} d^{3} \overrightarrow{r^{\prime}} \\
\vec{j}(\vec{r}) & =j \vec{e}_{z}
\end{aligned}
$$

Use cylindrical coordinates ##\vec{r}=(\rho, \varphi, z)##. Due to the symmetry, we have:
$$
\vec{A}(\vec{r})=A(\rho, \varphi, z) \vec{e}_{z}=A(\rho) \vec{e}_{z}
$$
 
Last edited:
Physics news on Phys.org
  • #2
If you have an infinitely long cylindrical object then the field can't depend on either ##z## or ##\varphi## because the charge and current densities are symmetrical under rotation around the ##z## axis and translation along it. If the sources are symmetric like that, how can the fields be otherwise? If they were (e.g.) weaker at some ##z=z_0##, why there?

So the ##\vec B## field is cylindrically symmetric. What ways can a vector field be cylindrically symmetric? What does that tell you about ##\vec A##?
 
  • Like
Likes LeoJakob
  • #3
There is no way to generally prove that the vector potential does not depend on particular coordinates since it is always possible to perform a gauge transformation ##\vec A \to \vec A + \nabla \phi## with the same resulting field for any scalar function ##\phi##.

Any symmetry argument must be based on this particular expression for the vector potential.
 
  • Like
Likes LeoJakob

Similar threads

Replies
4
Views
442
  • Electromagnetism
Replies
14
Views
1K
  • Electromagnetism
Replies
1
Views
771
  • Introductory Physics Homework Help
Replies
17
Views
402
Replies
1
Views
378
  • Advanced Physics Homework Help
Replies
1
Views
427
Replies
2
Views
850
  • Introductory Physics Homework Help
Replies
3
Views
1K
Replies
6
Views
9K
  • Introductory Physics Homework Help
Replies
25
Views
282
Back
Top