A question about Alice and Bob in SR

  • I
  • Thread starter MathematicalPhysicist
  • Start date
  • Tags
    Sr
In summary: Bob's clock read ##\Delta t##, and that ##\Delta t## is measured in Bob's frame of reference. So the time it takes for the pulse to reach Alice is ##t## in Bob's frame of reference, so by the time Alice reaches Bob, Bob's clock will read ##2\Delta t##, so the time elapsed between the moments Alice passes by Bob is ##2\Delta t##. And now I need to find ##\tau## and ##t## at the first time they meet and then solve for the events when they meet again, am I correct?Yeah, more or less. You need to be careful with the notation though.
  • #1
MathematicalPhysicist
Gold Member
4,699
371
Bob is an observer at rest in Minkowski space at ##x=L##.
Alice moves in a constant acceleration (in her system).
her path is depicted in the attached file, when Alice passes by Bob they synchronize their watches and Bob activates an apparatus that signals pulses to Alice.
Every short time period ##\Delta t## (which is calculated in Bob's system) a pulse is ejected.

The path of Alice is described by ##X(\tau)=\frac{1}{a}\cosh(a\tau)##, ##T(\tau)=\frac{1}{a}\sinh(a\tau)##.

I have a few questions:
1. What does Alice's watch show when they meet again?
2. What does Bob's watch show when they meet again?
3. How many pulses arrive to Alice?

My wrong answers are as follow:
1.We take ##c=1##, so ##\tau=\Delta t \cdot \gamma \cdot 2##, ##v= a\Delta t \cdot 2##; so ##\tau = 2\Delta t \frac{1}{\sqrt{1-(a\Delta t)^2\cdot 4}}##; so the watch of Alice will show the time:
$$T(\tau)= 1/a \cdot \sinh(\frac{2a\Delta t}{\sqrt{1-(a\Delta t)^2\cdot 4}}$$
2. I wrote that Bob's watch will show ##2\Delta t##, but it's wrong.
3. The number of pulses arriving to Alice are ##N=T(\tau)/\Delta t##, where ##T(\tau)## is the same as I got in question 1.

I will appreciate it
Screenshot from 2018-09-05 09-33-06.png
if you will guide me how to answer these questions correctly, thanks!
 

Attachments

  • Screenshot from 2018-09-05 09-33-06.png
    Screenshot from 2018-09-05 09-33-06.png
    29.8 KB · Views: 661
Physics news on Phys.org
  • #2
##\tau## is Alice's proper time - the time measured on her wristwatch. ##t## is the coordinate time in Bob's rest frame, so corresponds to Bob's proper time. So all you need to do is work out the ##\tau## and ##t## values at the two times they meet and you have everything you need.
 
  • #3
MathematicalPhysicist said:
Alice moves in a constant acceleration (in her system).
I assume that by this you mean to say that Alice has constant proper acceleration.

MathematicalPhysicist said:
1.We take ##c=1##, so ##\tau=\Delta t \cdot \gamma \cdot 2##, ##v= a\Delta t \cdot 2##; so ##\tau = 2\Delta t \frac{1}{\sqrt{1-(a\Delta t)^2\cdot 4}}##; so the watch of Alice will show the time:
$$T(\tau)= 1/a \cdot \sinh(\frac{2a\Delta t}{\sqrt{1-(a\Delta t)^2\cdot 4}}$$
I am not sure what you are doing here. It is unclear how you relate the pulse to the time passed. Are you computing the time passed between pulses or the time passed between two simultaneities according to Bob?

The easier approach is to note that ##\tau## is the proper time of Alice. Solve for the meeting events and use that the time coordinate is Bob's proper time.

Hint: The relation ##\sinh(\cosh^{-1}(x)) = \sqrt{x^2 - 1}## might come in handy ...

2. I wrote that Bob's watch will show ##2\Delta t##, but it's wrong.

Again, you need to be careful and more specific about what ##\Delta t## is. It is not clear from your description.
 
  • #4
Orodruin said:
I assume that by this you mean to say that Alice has constant proper acceleration.
Yes.

I am not sure what you are doing here. It is unclear how you relate the pulse to the time passed. Are you computing the time passed between pulses or the time passed between two simultaneities according to Bob?

The easier approach is to note that ##\tau## is the proper time of Alice. Solve for the meeting events and use that the time coordinate is Bob's proper time.

Hint: The relation ##\sinh(\cosh^{-1}(x)) = \sqrt{x^2 - 1}## might come in handy ...

Do you mean something like this: ##1/a \sinh (a\tau)=\tau##?
Again, you need to be careful and more specific about what ##\Delta t## is. It is not clear from your description.
Bob is sending pulses to Alice in constant increments of time ##\Delta t##.
 
  • #5
Ibix said:
##\tau## is Alice's proper time - the time measured on her wristwatch. ##t## is the coordinate time in Bob's rest frame, so corresponds to Bob's proper time. So all you need to do is work out the ##\tau## and ##t## values at the two times they meet and you have everything you need.
So I need to equate: ##X(\tau)=at^2/2##, and then I need to salvage ##\tau## from this equation, am I correct?
 
  • #6
MathematicalPhysicist said:
Yes.
Do you mean something like this: ##1/a \sinh (a\tau)=\tau##?

Bob is sending pulses to Alice in constant increments of time ##\Delta t##.
Again, it is not clear from your description what these light pulses have to do with the computation of the proper times. (They don't, you could use them but you need to be much more careful and it will become much more messy than just using that ##\tau## is the proper time of Alice and ##t## the proper time of Bob.)

##(1/a)\sinh(a\tau) = \tau## makes no sense. You need to find the events on the world line ##x = L## that intersect the world line of Alice. The difference in ##\tau## between those events is the proper time elapsed for Alice, the difference in ##t## between those events is the proper time elapsed for Bob.
 
  • #7
@Orodruin , so I need to find ##X(\tau)=L## and then plug the ##\tau## I find from this equation into ##T(\tau)##, and the difference I find, i.e. ##T(\tau)-\tau## is the time elapsed in Alice's frame of reference.

Is Bob's duration of time should be ##(T(\tau)-\tau)/\gamma## or is it ##(T(\tau)-\tau)\cdot \gamma##?

And ##\gamma = \frac{1}{\sqrt{1-(a\tau)^2}}## in units of ##c=1##.
 
  • #8
You should not be using ##\gamma## at all. Bob's duration is the difference in the time coordinate, nothing else.
 
  • #9
Orodruin said:
You should not be using ##\gamma## at all. Bob's duration is the difference in the time coordinate, nothing else.
So it should be ##\Delta t##.
 
  • #10
MathematicalPhysicist said:
So it should be ##\Delta t##.
What do you mean by ##\Delta t## now? Previously you were using in connection to some light signals and it was unclear what you meant by it. In general, yes the proper time of Bob is the difference in coordinate time (in Bob's rest frame) between the two events.
 
  • #11
When Bob meets Alice for the first time he then initiates a continuous stream of pulses which are ejected from him towards Alice in increments of time of ##\Delta t##.
 
  • #12
MathematicalPhysicist said:
When Bob meets Alice for the first time he then initiates a continuous stream of pulses which are ejected from him towards Alice in increments of time of ##\Delta t##.
Then that has absolutely nothing to do with the time computed by Bob. I suggest you forget about those light pulses. They are completely unnecessary to compute the elapsed proper time.
 
  • #13
Orodruin said:
Then that has absolutely nothing to do with the time computed by Bob. I suggest you forget about those light pulses. They are completely unnecessary to compute the elapsed proper time.
You wrote: "the difference in ##t## between those events is the proper time elapsed for Bob."
But how to calculate this difference then?
 
  • #14
MathematicalPhysicist said:
You wrote: "the difference in ##t## between those events is the proper time elapsed for Bob."
But how to calculate this difference then?
The difference between the ##t## coordinates of those events. They have nothing to do with any ##\Delta t## artificially imposed by sending out light signals. They only depend on the solutions to the world line intersections.
 
  • #15
Orodruin said:
The difference between the ##t## coordinates of those events. They have nothing to do with any ##\Delta t## artificially imposed by sending out light signals. They only depend on the solutions to the world line intersections.
So the difference in Bob's proper time should be: ##t=L/(a\tau)##, am I correct?

And for the last question, of how many pulses did Alice receive?

I just need to compute ##(T(\tau)-\tau)/\Delta t##, or is it something else?
 
  • #16
MathematicalPhysicist said:
You wrote: "the difference in ##t## between those events is the proper time elapsed for Bob."
But how to calculate this difference then?

You have the two equations:

##x = \frac{1}{a} cosh(a \tau)##
##t = \frac{1}{a} sinh(a \tau)##

Put them together using the fact that ##cosh^2 - sinh^2 = 1##:

##x^2 - t^2 = \frac{1}{a^2}##

So that allows you to compute Bob's time, ##t## for when Alice reaches the point ##x##.

##t = \pm \sqrt{x^2 - \frac{1}{a^2}}##

The two times that Alice meets Bob are the times when ##x=L##. So those two times are:

##t = \pm \sqrt{L^2 - \frac{1}{a^2}}##

The minus sign corresponds to the first time they meet, and the plus sign corresponds to the second time. So you don't need ##\tau## to compute ##\Delta t##. Just subtract the two.
 
  • Like
Likes MathematicalPhysicist
  • #17
If Alice moves with constant proper acceleration how can they meet a second time?
 
  • #18
stevendaryl said:
You have the two equations:

##x = \frac{1}{a} cosh(a \tau)##
##t = \frac{1}{a} sinh(a \tau)##

Put them together using the fact that ##cosh^2 - sinh^2 = 1##:

##x^2 - t^2 = \frac{1}{a^2}##

So that allows you to compute Bob's time, ##t## for when Alice reaches the point ##x##.

##t = \pm \sqrt{x^2 - \frac{1}{a^2}}##

The two times that Alice meets Bob are the times when ##x=L##. So those two times are:

##t = \pm \sqrt{L^2 - \frac{1}{a^2}}##

The minus sign corresponds to the first time they meet, and the plus sign corresponds to the second time. So you don't need ##\tau## to compute ##\Delta t##. Just subtract the two.

So Just to recapitulate the answers:
1. Alice's watch shows: ##T(\tau)-\tau = \frac{1}{a}\sqrt{(aL)^2-1}-\frac{1}{a}\cosh^{-1}(aL)##.
2. Bob's watch shows: ##2\sqrt{L^2-1/a^2}##.
3. I think Alice's receives ##(T(\tau)-\tau)/\Delta t##, am I wrong?
 
  • #19
MathematicalPhysicist said:
So Just to recapitulate the answers:
1. Alice's watch shows: ##T(\tau)-\tau = \frac{1}{a}\sqrt{(aL)^2-1}-\frac{1}{a}\cosh^{-1}(aL)##.
2. Bob's watch shows: ##2\sqrt{L^2-1/a^2}##.
3. I think Alice's receives ##(T(\tau)-\tau)/\Delta t##, am I wrong?

I don't know where you're getting #1. The time ##\tau## on Alice's watch when she is at location ##x## is simply ##\tau = \pm \frac{1}{a} cosh^{-1}(ax)##. So the two times when she meets Bob are:

##\tau = \pm \frac{1}{a} cosh^{-1}(aL)##

So for Alice, the time between their meetings is just:

##2 \frac{1}{a} cosh^{-1}(aL)##

For Bob, the time between meetings is given by your #2.

The number of pulses that Alice receives between those times are equal to the number of pulses Bob sends, because she receives every one of them.
 
  • #20
stevendaryl said:
I don't know where you're getting #1. The time ##\tau## on Alice's watch when she is at location ##x## is simply ##\tau = \pm \frac{1}{a} cosh^{-1}(ax)##. So the two times when she meets Bob are:

##\tau = \pm \frac{1}{a} sinh^{-1}(aL)##

So for Alice, the time between their meetings is just:

##2 \frac{1}{a} sinh^{-1}(aL)##

For Bob, the time between meetings is given by your #2.

The number of pulses that Alice receives between those times are equal to the number of pulses Bob sends, because she receives every one of them.
I thought that I need to equate: ##X(\tau)=L## and then insert the tau that I find into ##T(\tau)##, and then the difference between ##T(\tau)-\tau## is the time that elapsed in Alice's frame, so you say that it's wrong?
 
  • #21
MathematicalPhysicist said:
I thought that I need to equate: ##X(\tau)=L## and then insert the tau that I find into ##T(\tau)##, and then the difference between ##T(\tau)-\tau## is the time that elapsed in Alice's frame, so you say that it's wrong?

Let's review: Bob is using an inertial coordinate system ##x, t##. Alice is traveling in such a way that if her clock shows time ##\tau##, then her coordinates (according to Bob) are given by:

##x = \frac{1}{a} cosh(a \tau)##
##t = \frac{1}{a} sinh(a \tau)##

So it follows that when Alice's x-coordinate is ##L##, then her clock must show a time ##\tau## such that:

##L = \frac{1}{a} cosh(a \tau)##

So ##\tau = \pm \frac{1}{a} cosh^{-1}(aL)##

That's it. That tells the times ##\tau## at which Alice meets Bob.

[edit]

You're exactly right that you use ##X(\tau) = L##. That implies that ##\tau = \pm \frac{1}{a} cosh^{-1}(aL)##, as I said.

Your other expression, ##T(\tau) - \tau## doesn't make any sense. ##T(\tau)## is Bob's time, and ##\tau## is Alice's time. Subtracting them doesn't make any sense. To find out the elapsed time for Bob, you just use: ##T(\tau_2) - T(\tau_1)## where ##\tau_1## is Alice's time for the first meeting and ##\tau_2## is Alice's time for the second meeting. But you already computed that in a previous post: Bob's elapsed time is ##2 \sqrt{L^2 - \frac{1}{a^2}}##
 
Last edited:
  • Like
Likes MathematicalPhysicist
  • #22
stevendaryl said:
That's it. That tells the times ##\tau## at which Alice meets Bob.
re. post #17, is there any physical interpretation of the negative time solution in this case, coz I can't think of one?
 
  • #23
m4r35n357 said:
re. post #17, is there any physical interpretation of the negative time solution in this case, coz I can't think on one?

Look, at some point, your clock says ##t=0##. That means that earlier times had ##t < 0##. and later times will have ##t > 0##.

So a negative value of time just means a time that was earlier than the moment ##t=0##.

If Alice is traveling so that ##x = \frac{1}{a} cosh(a \tau)##, and Bob is traveling so that ##x = L##, then when ##\tau=0##, the distance between Alice and Bob is ##L - \frac{1}{a}##.

So the original equations set it so that Alice meets Bob once earlier than ##\tau=0## and once later than ##\tau = 0##.
 
  • #24
stevendaryl said:
So the original equations set it so that Alice meets Bob once earlier than ##\tau=0## and once later than ##\tau = 0##.
I am referring the diagram in the OP, which appears to show Alice approaching from x -> - infinity, meeting Bob as some coordinate (Bob) time, say 0, then receding again to x -> infinity. One meeting.

So either you are misinterpreting the diagram, or I am misinterpreting the equations ;)

[EDIT] just realized I am misinterpreting the diagram - pardon me!
 
  • #25
stevendaryl said:
Let's review: Bob is using an inertial coordinate system ##x, t##. Alice is traveling in such a way that if her clock shows time ##\tau##, then her coordinates (according to Bob) are given by:

##x = \frac{1}{a} cosh(a \tau)##
##t = \frac{1}{a} sinh(a \tau)##

So it follows that when Alice's x-coordinate is ##L##, then her clock must show a time ##\tau## such that:

##L = \frac{1}{a} cosh(a \tau)##

So ##\tau = \pm \frac{1}{a} cosh^{-1}(aL)##

That's it. That tells the times ##\tau## at which Alice meets Bob.

[edit]

You're exactly right that you use ##X(\tau) = L##. That implies that ##\tau = \pm \frac{1}{a} cosh^{-1}(aL)##, as I said.

Your other expression, ##T(\tau) - \tau## doesn't make any sense. ##T(\tau)## is Bob's time, and ##\tau## is Alice's time. Subtracting them doesn't make any sense. To find out the elapsed time for Bob, you just use: ##T(\tau_2) - T(\tau_1)## where ##\tau_1## is Alice's time for the first meeting and ##\tau_2## is Alice's time for the second meeting. But you already computed that in a previous post: Bob's elapsed time is ##2 \sqrt{L^2 - \frac{1}{a^2}}##
So so the number of pulses she receives are: ##2/(a\Delta t)\cosh^{-1}(aL)##, is this correct?
 
  • #26
MathematicalPhysicist said:
So so the number of pulses she receives are: ##2/(a\Delta t)\cosh^{-1}(aL)##, is this correct?
No. How many pulses does Bob send? Could Alice not receive a pulse? Could she receive a pulse Bob didn't send? So how many pulses does she receive?
 
  • #27
@Ibix so she receives zero pulses?

Because none of the pulses he sends arrive to her.
 
  • #28
MathematicalPhysicist said:
@Ibix so she receives zero pulses?

Because none of the pulses he sends arrive to her.
I'm confused. What do you think would stop them arriving?
 
  • #29
I don't see how to compute the number of pulses she receives, I thought it should be the time between their occurrences of they meetings, divided by the time interval ##\Delta t##.
 
  • #30
MathematicalPhysicist said:
I don't see how to compute the number of pulses she receives, I thought it should be the time between their occurrences of they meetings, divided by the time interval ##\Delta t##.
It is. But whose time interval? Alice and Bob don't agree on the duration.

When answering the question, think whose clock is responsible for measuring ##\Delta t##.
 
  • #31
Ibix said:
It is. But whose time interval? Alice and Bob don't agree on the duration.

When answering the question, think whose clock is responsible for measuring ##\Delta t##.
Bob's, because ##\Delta t## is according to his clock.

So if I am not mistaken the number of pulses arriving to Alice are: ##(2/a\Delta t)\sqrt{L^2-1/a^2}##.
 
  • #32
MathematicalPhysicist said:
Bob's, because ##\Delta t## is according to his clock.

So if I am not mistaken the number of pulses arriving to Alice are: ##(2/a\Delta t)\sqrt{L^2-1/a^2}##.
Exactly - the same number as emitted.
 
  • Like
Likes MathematicalPhysicist

1. What is the significance of Alice and Bob in Special Relativity?

Alice and Bob are commonly used as placeholder names in thought experiments and examples in physics, including Special Relativity. They represent two observers or reference frames, and their interactions and observations help illustrate the principles of Special Relativity.

2. Why are Alice and Bob often depicted as moving at the speed of light in opposite directions?

This setup, known as the "light-clock scenario," is a simplified way to demonstrate the time dilation and length contraction effects predicted by Special Relativity. By having Alice and Bob moving at the speed of light in opposite directions, it allows for a clear comparison of their observations and experiences.

3. Can Alice and Bob ever observe the same event at the same time?

No, according to Special Relativity, two observers in relative motion will not agree on the timing of events. This is due to the relativity of simultaneity, which states that the concept of "now" is not absolute but depends on the observer's reference frame.

4. How does the concept of time dilation apply to Alice and Bob in Special Relativity?

Time dilation refers to the slowing down of time for an object or observer in motion relative to another. In the light-clock scenario with Alice and Bob, Alice will observe Bob's clock ticking slower than her own, and vice versa. This is due to the fact that the speed of light is constant for all observers, and the closer an object moves to the speed of light, the slower time appears to pass for that object.

5. Are Alice and Bob affected by length contraction in Special Relativity?

Yes, length contraction is another consequence of Special Relativity. It refers to the shortening of an object's length in the direction of its motion as observed by an outside observer. In the light-clock scenario, Alice will observe Bob's ruler to be shorter than her own, and vice versa. This is also a result of the constancy of the speed of light and the relativity of simultaneity.

Similar threads

  • Special and General Relativity
Replies
29
Views
1K
Replies
25
Views
551
  • Special and General Relativity
2
Replies
55
Views
1K
  • Special and General Relativity
Replies
15
Views
2K
  • Special and General Relativity
Replies
6
Views
1K
  • Special and General Relativity
2
Replies
36
Views
3K
  • Special and General Relativity
Replies
20
Views
900
  • Special and General Relativity
2
Replies
42
Views
3K
  • Special and General Relativity
2
Replies
62
Views
4K
  • Special and General Relativity
Replies
13
Views
2K
Back
Top