MHB Algorithm: maximize sum of increasing functions

AI Thread Summary
The discussion centers on finding an algorithm to maximize the sum of increasing functions under a constraint on their inputs. The user, David, seeks to determine values \( n_i \) for multiple increasing functions such that the sum of these values does not exceed a specified limit \( N \), typically around 500. For two functions, exhaustive search is feasible, but the complexity increases with more functions. A suggested solution is the Downhill Simplex method (Nelder-Mead), which David plans to incorporate into a larger optimization framework. The conversation highlights the challenge of integrating heuristic solutions for subproblems within this optimization context.
Pereskia
Messages
15
Reaction score
2
Hi!

(Not sure which forum to pick for this question. This looked like the best one. I apologies if it is not)

I have a number of functions (say m functions) with integer domain. All functions are increasing. (Increasing in the sense not decreasing, $f(n+1) \ge f(n)$.) I want an algorithm to find $n_i$ for $1 \le i \le m$ such that $\sum_i^m n_i \le N$ that maximizes $\sum_i^m f(n_i)$.

$m$ is usually small (2 or 3) but can be larger as well and $m$ = 2 can be solved reasonably fast by exhaustive search, $m\ge3$ takes more time. Typically $N\approx 500$.

Is there any known algorithm?

Regards
David
 
Mathematics news on Phys.org
Pereskia said:
Hi!

(Not sure which forum to pick for this question. This looked like the best one. I apologies if it is not)

I have a number of functions (say m functions) with integer domain. All functions are increasing. (Increasing in the sense not decreasing, $f(n+1) \ge f(n)$.) I want an algorithm to find $n_i$ for $1 \le i \le m$ such that $\sum_i^m n_i \le N$ that maximizes $\sum_i^m f(n_i)$.

$m$ is usually small (2 or 3) but can be larger as well and $m$ = 2 can be solved reasonably fast by exhaustive search, $m\ge3$ takes more time. Typically $N\approx 500$.

Is there any known algorithm?

Regards
David

Hi Pereskia! Welcome to MHB! (Wave)

How do the different functions tie in?
I only see the single $f$, so we seem to have $m$ numbers instead of $m$ functions.
 
Hi!

Sorry, I want to maximize $\sum_{i=1}^m f_i(n_i)$. I lost the index $i$.

Regards
David
 
I like Serena said:
Then I think you are looking for the Downhill Simplex method (Nelder-Mead), which is also called the Amoeba method.

Thank you. I will add this method to my tool box.

I will however need the optimum in this case. It will be one part of a larger optimization algorithm. I don't know how the other parts will work with heuristic solutions to the subproblems.

Regards
David
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top