Arbitrary Union of Sets Question

TyroneTheDino
Messages
46
Reaction score
1

Homework Statement



For each ##n \in \mathbb{N}##, let ##A_{n}=\left\{n\right\}##. What are ##\bigcup_{n\in\mathbb{N}}A_{n}## and ##\bigcap_{n\in\mathbb{N}}A_{n}##.

Homework Equations



The Attempt at a Solution


I know that this involves natural numbers some how, I am just confused on a notation thing.
Is ##\bigcup_{n\in\mathbb{N}}A_{n}= \left \{ 1,2,3,... \right \}## or##\bigcup_{n\in\mathbb{N}}A_{n}= \left \{ \left\{1\right\},\left\{2\right\},... \right \}##.

To me it makes more sense that this is set of each set of every natural numbers, but somehow I think this is wrong and can't wrap my head around it.
 
Last edited:
Physics news on Phys.org
The problem statement is incomplete, it doesn't describe ##A_n##.

In terms of notation,
  • ##x \in \cup_{n\in\mathbb{N}} A_n ## if and only if there exists ##n\in\mathbb{N}## such that ##x\in A_n## (##x## belongs to at least one of the ##A_n##).
  • ##x \in \cap_{n\in\mathbb{N}} A_n ## if and only if ##x\in A_n## for all ##n\in\mathbb{N}## (##x## belongs to all ##A_n##).
 
geoffrey159 said:
The problem statement is incomplete, it doesn't describe ##A_n##.

In terms of notation,
  • ##x \in \cup_{n\in\mathbb{N}} A_n ## if and only if there exists ##n\in\mathbb{N}## such that ##x\in A_n## (##x## belongs to at least one of the ##A_n##).
  • ##x \in \cap_{n\in\mathbb{N}} A_n ## if and only if ##x\in A_n## for all ##n\in\mathbb{N}## (##x## belongs to all ##A_n##).
I updated it to define An.
 
TyroneTheDino said:

Homework Statement



For each ##n \in \mathbb{N}##, let ##A_{n}##. What are ##\bigcup_{n\in\mathbb{N}}A_{n}## and ##\bigcap_{n\in\mathbb{N}}A_{n}##.

Homework Equations



The Attempt at a Solution


I know that this involves natural numbers some how, I am just confused on a notation thing.
Is ##\bigcup_{n\in\mathbb{N}}A_{n}= \left \{ 1,2,3,... \right \}## or##\bigcup_{n\in\mathbb{N}}A_{n}= \left \{ \left\{1\right\},\left\{2\right\},... \right \}##.
##\bigcup_{n\in\mathbb{N}}A_{n}## means ##A_1 \cup A_2 \cup \dots \cup A_n## and similar for the intersection.
TyroneTheDino said:
To me it makes more sense that this is set of each set of every natural numbers, but somehow I think this is wrong and can't wrap my head around it.
 
Ok so you infered that the union was equal to ##\mathbb{N}##. How do you prove that two sets are equal ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top