Calculating Flywheel Inertia Using Conservation of Energy Equations?

  • #1
forces9912
6
3
Homework Statement
Problem in the images
Relevant Equations
mgh = 1/2 m v^2 + 1/2 I w^2 - Work
s = u t + 1/2 a t^2
a = v/t
I = 1/2 m R^2
I am stuck on what to do to calculate the inertia of a flywheel using the method described.
I am supposed to use conservation of energy equations to calculate the inertia.
I have a picture of the experiment and also the measurements I have taken.

IMG-4383.jpg

IMG-4384.jpg
It seems each method I try I get a different number for Inertia.
Any help on how to tackle this problem would be greatly appreciated.
 
Physics news on Phys.org
  • #2
The instructions seem to outline an approach. You must make a reasonable attempt at solving the questions before receiving help.

Also, for posting your equations please see the latex guide.

https://www.physicsforums.com/help/latexhelp/
 
  • #3
Sure, I will show you what I have worked out so far. I am stuck because the I value I worked out of 1.0273 kg/m^2 is very different to when I use I = 1/2 m R^2, where I got 1/2 * 4.01 * 0.08025^2 = 0.0129 kg/m2

IMG-4386.jpg
IMG-4385.jpg
 
  • #4
For one thing, It should be + W_loss on the RHS, not minus. The initial potential energy goes into three reservoirs. Your equation says you start off with potential energy and the heat that is then converted to kinetic energy. Do you see why that doesn’t make sense?

Also…again please write math equations using latex. The link is in the last post, or there is another on the lower left corner of the reply box. Your other pick is illegible( I’m on my phone-too small), cleanly write equations using the formatting available on the site, so errors can be directly quoted and addressed.
 
  • #5
Did it really take over 10 seconds to traverse the 1m? That implies less than a tenth of the energy went into linear KE, which is hard to believe.
 
  • #6
haruspex said:
Did it really take over 10 seconds to traverse the 1m? That implies less than a tenth of the energy went into linear KE, which is hard to believe.
Yes it did. It was a very gentle slope and also it was the shaft of the flywheel that was in contact with the surface. So most of the energy would have gone into rotating the central cylinder of the flywheel, if that makes sense.
 
  • #7
@forces9912 Do you see why ##W_{loss}## has the wrong sign in your Work-Energy equation?
 
  • #8
You also appear to be using the wrong radius ##r## in your calculations.
 
Last edited:
  • Like
Likes haruspex
  • #9
erobz said:
You also appear to be using the wrong radius ##r## in your calculations.
Quite so. @forces9912, which radius should you use to find the rotation rate from the linear speed?
 
  • #10
Welcome, @forces9912 !

Perhaps irrelevant, but I believe that the complete shape of the flywheel (one disc and two journals) should be considered.
The above calculation of the moment of inertia is actually for a simple disc of wider dimension, resulting in a higher value for I.

Please, see:
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#mix
Flywheel.jpg

Flywheel 2.jpg
 
  • #11
haruspex said:
Quite so. @forces9912, which radius should you use to find the rotation rate from the linear speed?
Right, I should be using the shaft radius of 0.01005m because that is the part of the flywheel that is in contact with the surface.
Lnewqban said:
Welcome, @forces9912 !

Perhaps irrelevant, but I believe that the complete shape of the flywheel (one disc and two journals) should be considered.
The above calculation of the moment of inertia is actually for a simple disc of wider dimension, resulting in a higher value for I.

Please, see:
http://hyperphysics.phy-astr.gsu.edu/hbase/mi.html#mix
View attachment 333973
View attachment 333974
Amazing graphic of the problem, thank you for that. I will have a read of that
erobz said:
@forces9912 Do you see why ##W_{loss}## has the wrong sign in your Work-Energy equation?
Yes I can see that now, thank you for making it clear
Potential Energy should = KE + KE rot + Energy loss.
 
  • Like
Likes Lnewqban and erobz
  • #12
These are my new calculations for ##I##

##0 = E-E_0 = (PE + K_{trans} + K_{rot}) - (PE_0 + K_{0trans} + K_{0rot})##

##0 = \frac {1}{2}Mv^2 + \frac {1}{2}Iw^2 - Mgh##

##0 = \frac {1}{2}Mv^2 + \frac {1}{2}I\left(\frac{v}{r}\right)^2 - Mgh##

rearranged for ##I##

##I = \frac{Mgh - \frac{1}{2}Mv^2}{\frac{1}{2}\left(\frac{v}{r}\right)^2} = \frac{Mr^2\left(2gh-v^2\right)}{v^2}##

##v = \frac {2d}{t}##

##I = \frac{Mr^2\left(2gh-\left(\frac{2d}{t}\right)^2\right)}{\left(\frac{2d}{t}\right)^2}##

##I = \frac{Mr^2\left(ght^2-2d^2\right)}{2d^2}##

##I = Mr^2 \left( \frac {ght-2d^2} {d^2}\right)##

##M=4.01 ##
##r=0.01005 ##
##h=0.04 ##
##d=1 ##
##t=13.28##

##I = 4.01*0.01005^2 \left( \frac {9.81*0.04*13.28-2*1^2} {1^2}\right)##

##I = 0.00065##
 
  • #13
forces9912 said:
These are my new calculations for ##I##

##0 = E-E_0 = (PE + K_{trans} + K_{rot}) - (PE_0 + K_{0trans} + K_{0rot})##

##0 = \frac {1}{2}Mv^2 + \frac {1}{2}Iw^2 - Mgh##
Where did the frictional work term go? You should be solving for ##I## and ##E_{loss}## simultaneously using the (both) experimental results.
 
  • #14
erobz said:
Where did the frictional work term go? You should be solving for ##I## and ##E_{loss}## simultaneously using the (both) experimental results.
Right, so then my formula will end up like

##0 = (PE + K_{trans} + K_{rot} + E_{loss}) - (PE_0 + K_{0trans} + K_{0rot} + E_{0loss})##

##0 = \frac {1}{2}Mv^2 + \frac {1}{2}Iw^2 + E_{loss} - Mgh##

##E_{loss} = Mgh - \frac {1}{2}Mv^2 - \frac {1}{2}I\left(\frac{v}{r}\right)^2##

and then I put in the data from each experiment and set it to equal each other, and finally solve for ##I##?

such as

##Mg(h_1) - \frac {1}{2}M(v_1)^2 - \frac {1}{2}I\left(\frac{(v_1)}{r}\right)^2 = Mg(h_2) - \frac {1}{2}M(v_2)^2 - \frac {1}{2}I\left(\frac{(v_2)}{r}\right)^2##
 
  • Like
Likes erobz
  • #15
Correct, then sub that result into either equation to get ##E_{loss}##.
 

1. What is flywheel inertia?

Flywheel inertia refers to the measure of an object's resistance to changes in its rotational motion. In other words, it is the tendency of a spinning object to maintain its speed and direction of rotation.

2. Why is it important to calculate flywheel inertia?

Calculating flywheel inertia is important in various engineering and scientific applications, such as designing motors and engines, determining the stability and performance of rotating systems, and predicting the behavior of flywheels in different scenarios.

3. How is flywheel inertia calculated using conservation of energy equations?

Flywheel inertia can be calculated by using the conservation of energy equation, which states that the total energy of a system remains constant. The equation for calculating flywheel inertia is I = (1/2) * m * r^2, where I is the moment of inertia, m is the mass of the flywheel, and r is the radius of the flywheel.

4. What are the units of flywheel inertia?

The units of flywheel inertia are kilogram-meter squared (kg-m^2) in the SI system or slug-feet squared (slug-ft^2) in the English system. These units represent the distribution of mass around the axis of rotation and are used to measure the resistance to changes in rotational motion.

5. How does the shape of a flywheel affect its inertia?

The shape of a flywheel can significantly affect its inertia. A flywheel with a larger radius and a more compact shape will have a higher moment of inertia compared to a smaller and more elongated flywheel with the same mass. This is because the mass distribution in a flywheel is directly related to its moment of inertia.

Similar threads

  • Introductory Physics Homework Help
2
Replies
40
Views
2K
  • Introductory Physics Homework Help
Replies
13
Views
1K
Replies
10
Views
432
  • Introductory Physics Homework Help
Replies
21
Views
1K
  • Introductory Physics Homework Help
Replies
14
Views
2K
  • Introductory Physics Homework Help
Replies
14
Views
1K
  • Introductory Physics Homework Help
Replies
3
Views
873
  • Introductory Physics Homework Help
Replies
6
Views
1K
  • Introductory Physics Homework Help
Replies
8
Views
389
  • Mechanical Engineering
Replies
2
Views
664
Back
Top