The fraction 2h/h² + 2h + 2 cannot be simplified by canceling out 2h. The expression simplifies to 2(1/h + h + 1), but 2h does not cancel out in this form. If the expression were 2h/(h² + 2h + 2), it still would not simplify further. Therefore, the initial assumption about canceling 2h is incorrect. The discussion clarifies the importance of correctly interpreting the fraction for simplification.
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes.
I have seen that this is an important subject in maths
My question is what physical applications does such a model apply to?
I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Greg tells me the feature to generate a new insight announcement is broken, so I am doing this:
https://www.physicsforums.com/insights/fixing-things-which-can-go-wrong-with-complex-numbers/
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles.
In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra
Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/
by...