Causality preserved in Klein-Gordon equation

So the argument is the same as if I would have written ##D(z^2)##. Since ##(z')^2=z^2## follows ##D(z^2)=D((z')^2)##.
  • #1
Silviu
624
11
Hello! I am reading Peskin's book on QFT and in chapter one he shows that ##[\phi(x), \phi(y)] = D(x-y) - D(y-x)##, with ##D(x-y)## being the propagator from ##x## to ##y##. He says that if ##(x-y)^2<0## we can do a Lorentz transformation such that ##(x-y) \to -(x-y)## and hence the commutator vanishes and causality is conserved. Also he says that if ##(x-y)^2>0## we can't make such a Lorentz transformation. I am not sure how is he doing these Lorentz transformations and why you can do them in the first case but not in the second. Also, I am not sure I understand how can you do in the fist case this transformation just for the second propagator, while keeping the first one fixed.
 
Physics news on Phys.org
  • #2
First of all, it's always important to tell which propagator you are talking about. It's about Peskin+Schroeder Section 2.4. So here he defines ##D## to be the Wightman function (vev of a fixed-order field-operator product),
$$D(x-y)=\langle 0|\hat{\phi}(x) \hat{\phi}(y)|0 \rangle=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \frac{1}{(2 \pi)^3 2 E_{\vec{p}}} \exp[-\mathrm{i} p\cdot(x-y)].$$
This is a Lorentz-scalar field, because ##\mathrm{d}^3 \vec{p}/(2 E_{\vec{p}})## is a Lorentz scalar and all other ingredients in the integral are manifestly Lorentz invariant (with Lorentz invariant here I mean invariance under the proper orthochronous Lorentz group). Since further there is no other four vector then ##z=x-y## this implies that
$$D'(z')=D(z')=D(z), \quad z'=\Lambda z, \quad \Lambda \in \mathrm{SO}(1,3)^{\uparrow}.$$
This implies that if the claim about space-like vectors is true you have
$$D(z)=D(-z) \quad \text{for} \quad z^2<0,$$
and this implies that the vev of the commutator which is ##D(x-y)-D(y-x)## by definition, indeed vanishes for space-like ##x-y##.

Now let's prove the claim about space-like vectors. So let ##z^2<0##. Then we can always use a coordinate system, where ##z^0=0##. To see this just take ##e_1=z/\sqrt{-z \cdot z}## as one of the space-like basis vectors. The basis can be obviously constructed such that the change to this coordinate system is given by a proper orthochronous Lorentz transformation. So we have
$$z=\begin{pmatrix}0\\ z^1 \\ 0 \\ 0 \end{pmatrix}.$$
Now a rotation around the ##z^3##-axis reads
$$z^{\prime 0}=z^0=0, \quad \vec{z}'=\begin{pmatrix} \cos \phi & \sin \phi & 0\\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix}z^1 \\0 \\ 0 \end{pmatrix} = z^1 \begin{pmatrix} \cos \phi \\ -\sin \phi \\0 \end{pmatrix}.$$
For ##\phi=\pi## you get ##\vec{z}'=-\vec{z}##, as claimed.

It's a good exercise to prove that this argument doesn't work for timelike vectors, because the sign of ##z^0## cannot be changed by a proper orthochronous Lorentz transformation (that's why it's called orthochronous).
 
  • Like
Likes Abhishek11235 and dextercioby
  • #3
vanhees71 said:
First of all, it's always important to tell which propagator you are talking about. It's about Peskin+Schroeder Section 2.4. So here he defines ##D## to be the Wightman function (vev of a fixed-order field-operator product),
$$D(x-y)=\langle 0|\hat{\phi}(x) \hat{\phi}(y)|0 \rangle=\int_{\mathbb{R}^3} \mathrm{d}^3 \vec{p} \frac{1}{(2 \pi)^3 2 E_{\vec{p}}} \exp[-\mathrm{i} p\cdot(x-y)].$$
This is a Lorentz-scalar field, because ##\mathrm{d}^3 \vec{p}/(2 E_{\vec{p}})## is a Lorentz scalar and all other ingredients in the integral are manifestly Lorentz invariant (with Lorentz invariant here I mean invariance under the proper orthochronous Lorentz group). Since further there is no other four vector then ##z=x-y## this implies that
$$D'(z')=D(z')=D(z), \quad z'=\Lambda z, \quad \Lambda \in \mathrm{SO}(1,3)^{\uparrow}.$$
This implies that if the claim about space-like vectors is true you have
$$D(z)=D(-z) \quad \text{for} \quad z^2<0,$$
and this implies that the vev of the commutator which is ##D(x-y)-D(y-x)## by definition, indeed vanishes for space-like ##x-y##.

Now let's prove the claim about space-like vectors. So let ##z^2<0##. Then we can always use a coordinate system, where ##z^0=0##. To see this just take ##e_1=z/\sqrt{-z \cdot z}## as one of the space-like basis vectors. The basis can be obviously constructed such that the change to this coordinate system is given by a proper orthochronous Lorentz transformation. So we have
$$z=\begin{pmatrix}0\\ z^1 \\ 0 \\ 0 \end{pmatrix}.$$
Now a rotation around the ##z^3##-axis reads
$$z^{\prime 0}=z^0=0, \quad \vec{z}'=\begin{pmatrix} \cos \phi & \sin \phi & 0\\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix}z^1 \\0 \\ 0 \end{pmatrix} = z^1 \begin{pmatrix} \cos \phi \\ -\sin \phi \\0 \end{pmatrix}.$$
For ##\phi=\pi## you get ##\vec{z}'=-\vec{z}##, as claimed.

It's a good exercise to prove that this argument doesn't work for timelike vectors, because the sign of ##z^0## cannot be changed by a proper orthochronous Lorentz transformation (that's why it's called orthochronous).
Thank you for you answer. I am just now sure why ##D'(z')=D(z')=D(z)##. The first and the 3rd term are equal as D is a scalar field. But why does the equality in the middle holds?
 
  • #4
By definition a scalar field obeys
$$D'(z')=D(z).$$
Now since there's no other vector involved, of which ##D## could depend, and thus you must have ##D'=D##, i.e., also ##D'(z')=D(z')##.

Another argument is that if you have no other vectors then ##z## a scalar function must be a function of ##z^2##.
 

1. What is the Klein-Gordon equation and how does it relate to causality?

The Klein-Gordon equation is a relativistic wave equation that describes the behavior of spinless particles. It is important in physics because it is the relativistic version of the Schrödinger equation and can be used to describe the behavior of quantum systems. The equation is also causality-preserving, meaning that the effects of a particle's motion cannot occur before its cause.

2. How does the Klein-Gordon equation ensure causality is preserved?

The Klein-Gordon equation is derived from the relativistic energy-momentum relationship, which is based on Einstein's theory of special relativity. This equation ensures that the speed of a particle is always less than or equal to the speed of light, which is a fundamental principle of causality in physics.

3. Can the Klein-Gordon equation violate causality?

No, the Klein-Gordon equation cannot violate causality. As mentioned earlier, the equation is based on the principles of special relativity, which dictate that the speed of an object cannot exceed the speed of light. This ensures that causality is always preserved in the behavior of particles described by the Klein-Gordon equation.

4. Are there any experimental evidence that supports the causality preservation in the Klein-Gordon equation?

Yes, there have been numerous experiments that have tested the predictions of the Klein-Gordon equation and have found them to be consistent with the principles of causality. For example, experiments with particle accelerators have shown that the behavior of particles can be accurately described by the Klein-Gordon equation, providing evidence for its validity.

5. In what situations is the Klein-Gordon equation used and how is causality preserved in these situations?

The Klein-Gordon equation is used to describe the behavior of fundamental particles, such as electrons and quarks, in quantum systems. In these situations, causality is preserved through the principle of locality, which states that the effects of a particle's motion can only be felt in its immediate vicinity. This ensures that causality is maintained even in the highly complex interactions of quantum systems.

Similar threads

Replies
1
Views
792
  • Quantum Physics
Replies
13
Views
761
Replies
6
Views
1K
Replies
41
Views
4K
  • Quantum Physics
Replies
9
Views
1K
  • Quantum Physics
Replies
1
Views
1K
  • Quantum Physics
Replies
13
Views
3K
Replies
9
Views
778
  • Quantum Physics
Replies
5
Views
2K
  • Quantum Physics
Replies
4
Views
1K
Back
Top