MHB Cot(θ) = tan(2θ - 3π) find 0 < θ < 2π

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
The equation $\cot(\theta) = \tan(2\theta - 3\pi)$ simplifies to $\cot(\theta) = \tan(2\theta)$, leading to the relationship $\frac{1}{\tan(\theta)} = \tan(2\theta)$. By applying the co-function identity and the periodicity of the tangent function, the solutions for $\theta$ are derived. The key results yield four angles: $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, and $\frac{11\pi}{6}$. Thus, the complete set of solutions for the equation within the interval $0 < \theta < 2\pi$ is established.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\cot{(\theta)}=\tan{(2\theta-3\pi)}$ find $0<\theta<2\pi$

From the periodic Formula $\tan{(\theta+\pi n)}=\tan{\theta}$

thus
$
\displaystyle
\cot{(\theta)}
=\tan{(2\theta)}
\Rightarrow
\frac{1}{\tan{\theta}}
=\tan{(2\theta)}
$

there are 6 answers to this, but stuck here
 
Mathematics news on Phys.org
I would stop at:

$$\cot(\theta)=\tan(2\theta)$$

Then, I would try combining the following:

Co-function identity:

$$\cot(\theta)=\tan\left(\frac{\pi}{2}-\theta \right)$$

Periodicity of tangent function:

$$\tan(\theta)=\tan(\theta+k\pi)$$ where $$k\in\mathbb{Z}$$

This will give you the six roots you desire.
 
by this I assume

$\displaystyle 2 \theta =\frac{\pi}{2}-\theta$
so
$\displaystyle
\theta=\frac{\pi}{6}$
then for $\displaystyle 0<\theta<2\pi $ using $\tan{(\theta+\pi n)}=\tan{\theta}$ for period
$$
\theta = \frac{\pi}{6}, \frac{7\pi}{6}
$$
or
$$30^o,210^o$$

but that is only 2 of them
 
You would actually have:

$$\theta=\frac{\pi}{2}-2\theta+k\pi$$

See what you get from that. :D
 
Hello, karush!

\cot \theta\:=\:\tan(2\theta-3\pi),\quad 0&lt;\theta&lt;2\pi
\tan(2\theta - 3\pi) \;=\;\frac{\tan(2\theta) - \tan(3\pi)}{1 + \tan(2\theta)\tan(3\pi)} \;=\;\tan(2\theta)

. . . . . . . . . . =\;\frac{2\tan\theta}{1-\tan^2\theta}

The equation becomes: .\frac{1}{\tan\theta} \;=\;\frac{2\tan\theta}{1-\tan^2\theta}

. . 1 - \tan^2\theta \:=\:2\tan^2\theta \quad\Rightarrow\quad 3\tan^2\theta \:=\:1

. . \tan^2\theta \:=\:\frac{1}{3} \quad\Rightarrow\quad \tan\theta \:=\:\pm\frac{1}{\sqrt{3}}

Therefore: .\theta \;=\;\frac{\pi}{6},\;\frac{5\pi}{6},\;\frac{7\pi}{6},\;\frac{11\pi}{6}
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top