MHB Definite Integral #2: Prove \[\pi/2 \text{sech}(\pi/2)\]

  • Thread starter Thread starter sbhatnagar
  • Start date Start date
  • Tags Tags
    Integral
AI Thread Summary
The discussion focuses on proving the integral \[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]. Participants explore various approaches, including substitutions and series expansions, to simplify the integral. One method involves using the substitution \(u=\ln(\tan x)\) and transforming the integral into a form that utilizes the beta function and properties of the gamma function. The conversation highlights the connection between the integral and complex analysis, particularly through the use of residues. The thread concludes with a successful evaluation of the integral, confirming the original statement.
sbhatnagar
Messages
87
Reaction score
0
Prove that

\[\int_0^{\pi/2}\cos(\ln(\tan(x)))dx=\frac{\pi}{2} \text{sech} \left(\frac{\pi}{2}\right)\]
 
Mathematics news on Phys.org
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?
 
Bacterius said:
Let $u = \ln{\tan{x}}$. Then we have $x = \arctan{(e^u)}$ and:

$$\mathrm{d} x = \frac{1}{e^u + e^{-u}} ~ \mathrm{d} u = \frac{1}{2} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We also have the new integral bounds $\ln{(\tan{0})} = -\infty$ and $\ln{(\tan{\frac{\pi}{2}})} = + \infty$. Substituting:

$$\displaystyle \int_0^{\frac{\pi}{2}} \cos{\ln{\tan{x}}} ~ \mathrm{d} x = \frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

We note the integrand is even, as both $\cos{(u)}$ and $\mathrm{sech}{(u)}$ are even. Thus we have:

$$\frac{1}{2} \int_{-\infty}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u$$

Now substitute $z =e^u$, so $u = \ln{z}$, and hence $\mathrm{d} u = \frac{1}{z} ~ \mathrm{d} z$. The bounds now become $e^0 = 1$ and $e^{+\infty} = + \infty$. Substituting:

$$\int_{0}^{+\infty} \cos{(u)} \mathrm{sech}{(u)} ~ \mathrm{d} u = \int_{1}^{+\infty} \cos{(\ln{z})} \mathrm{sech}{(\ln{z})} \cdot \frac{1}{z} ~ \mathrm{d} z$$

Using the complex exponential form of the hyperbolic secant, we see that:

$$\mathrm{sech}{(\ln{z})} = \frac{2z}{z^2 + 1}$$

And thus, our integral becomes:

$$\int_{1}^{+\infty} \frac{2z \cos{\ln{z}} }{z^2 + 1} \cdot \frac{1}{z} ~ \mathrm{d} z = 2 \int_{1}^{+\infty} \frac{\cos{\ln{z}} }{z^2 + 1} ~ \mathrm{d} z$$

We know from the complex exponential form of $\cos$ that:

$$\cos{\ln{z}} = \frac{1}{2} \left ( z^{-i} + z^i \right )$$

Substituting this into the integrand, we get:

$$\int_{1}^{+\infty} \frac{z^{-i} + z^i}{z^2 + 1} ~ \mathrm{d} z$$

And I can't seem to get any farther. I'll try and keep going later, I need sleep. Am I even on the right track, anyway?

Bacterius, my approach was a little different from yours. After using the substitution \(u=\ln(\tan x)\), I did

\[\begin{align} \int_0^\infty \cos(x) \text{sech}(x)dx &= 2\int_0^\infty \frac{e^{-x}}{1+e^{-2x}}\cos(x) dx\end{align}\]

Now use \(\displaystyle \frac{1}{1+e^{-2x}}=\sum_{n=0}^\infty (-1)^n e^{-2nx}\)

\[\begin{align} \int_0^\infty \cos(x)e^{-x} \sum_{n=0}^\infty (-1)^n e^{-2nx} dx &= \sum_{n=0}^\infty (-1)^n \int_0^\infty \cos(x) e^{-x(2n+1)}dx \\ &= \sum_{n=0}^{\infty}\frac{(-1)^n (2n+1)}{(2n+1)^2+1}\end{align}\]

This sum can be evaluated my many methods. Residues will be the easiest.
 
Last edited:
\int_{0}^{\frac{\pi}{2}}\cos(\ln(\tan(x)))dx

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x )\,-\,\ln(\cos x ))\, dx

=\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx

\text{Which is the real part of : }(\sin x)^i \cdot (\cos x)^{-i}

\int^{\frac{\pi}{2}}_0 \,(\sin x)^i \cdot (\cos x)^{-i} \, dx

\text{Now I would use the so called property of beta function }

\beta (x,y) = 2\int_0^{\pi/2}(\sin\theta)^{2x-1}(\cos\theta)^{2y-1}\,d\theta,

\int^{\frac{\pi}{2}}_{0}\, \cos (\ln(\sin x ))\,\cos(\ln(\cos x ))+\,\sin(\ln(\cos x ))\,\sin(\ln(\sin x ))\, dx\,= \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} )

\, \mathcal{Re}( \int^{\frac{\pi}{2}}_{0} (\sin x)^i \cdot (\cos x)^{-i} ) =\frac{1}{2} \, \mathcal{Re} ( \int^{\frac{\pi}{2}}_{0} (\sin x)^{2(\frac{1+i}{2})-1} \cdot (\cos x)^{2(\frac{1-i}{2})-1} ) \,=\,\frac{1}{2} \mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})} )

\frac{1}{2}\mathcal{Re}( \Gamma{(\frac{1+i}{2})} \, \Gamma{(\frac{1-i}{2})})=\frac{1}{2}\mathcal{Re}\( \Gamma{(\frac{1+i}{2})} \, \Gamma{(1-(\frac{1+i}{2}))}\)=\, \frac{1}{2}\,\mathcal{Re} ( \frac{\frac{\pi}{2}}{\sin(\frac{\pi+i\pi}{2})})

\sin(\frac{\pi+i\pi}{2})=\,\frac{e^{\frac{-\pi+i\pi}{2}}-e^{\frac{\pi-i\pi}{2}}}{2i}=\frac{ie^{\frac{-\pi}{2}}+ie^{\frac{\pi}{2}}}{2i}= \frac{e^{\frac{-\pi}{2}}+e^{\frac{\pi}{2}}}{2}=\cosh(\frac{\pi}{2})

\, \frac{1}{2}\,\mathcal{Re} ( \frac{\pi}{\sin(\frac{\pi+i\pi}{2})} ) = \frac{1}{2} \mathcal{Re}( \frac{\pi}{\cosh(\frac{\pi}{2})} ) = \frac {\pi}{2} \sec h ( \frac {\pi}{2})
 
Very Good ZaidAlyafey! :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top