Directional Derivative of Ricci Scalar: Lev-Civita Connection?

loops496
Messages
24
Reaction score
3
I have a question about the directional derivative of the Ricci scalar along a Killing Vector Field. What conditions are necessary on the connection such that K^\alpha \nabla_\alpha R=0. Is the Levi-Civita connection necessary?
I'm not sure about it but I believe since the Lie derivative is more 'fundamental' than the covariant derivative it might be not necessary to have a Levi-Civita connection, but maybe I'm just conjecturing nonsense. Hope anyone can help me find an answer.
 
Physics news on Phys.org
I think you need ##\nabla_a g_{bc}=0##. If the Lie derivative of a field is zero then ##g_{ab}## is preserved on the integral curves. You do not need a connection for the Lie derivative.
 
  • Like
Likes loops496 and vanhees71
Hey Mentz114, thank for replying! Since you don't need a connection for the Lie derivative, and Killing Vector Fields depend upon the Lie derivative I suspect you don't need the Levi-Civita Connection, However for the derivation of such identity I used the Bianchi identities which rely on a torsion free connection. So I don't know wether you acually don't need it.
 
##\nabla_c g_{ab}=0## implies the LC connection.

I'm not sure if I'm answering your question ...
 
I think metric compatibility is a weaker condition, i.e. you can have various Riemannian connections without any being the LC. But that still does not guarantee that the derivative along the Killing of the curvature scalar is 0, or does it?
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top