Electrostatics: sign of the potential

AI Thread Summary
The discussion centers on the sign convention in electrostatics, particularly regarding the potential energy associated with electric fields. It clarifies that the negative sign in the potential formula, V(r) = -∫E·dl, is crucial for ensuring that the potential energy reflects the work done against the electric field. When integrating from infinity to a point, the integral yields a negative value, which aligns with the expected positive potential difference. The conversation also emphasizes the importance of understanding the direction of the electric field relative to the displacement vector, as this affects the sign of the integral. Overall, the negative sign convention is rooted in classical mechanics to maintain consistency in energy calculations.
torito_verdejo
Messages
20
Reaction score
4
The final result will only differ in its sign, but this is crucial. Having a positively, radially oriented electric field ##\textbf{E}##, I understand that the sign of the integral should be positive (## - (- A) = A##), but it is not! How and why is this the case? A line integral where the vector field is antiparallel to the displacement vector should be negative; is this negativity already taken into account by the conventional minus sign in ##V(\textbf{r})=-\int_\Lambda \textbf{E}\cdot d\textbf{l}##?

Thank you very much.
 
Physics news on Phys.org
It's a convention that conservative fields' potentials are defined with the - sign. It comes from classical mechanics, where you like to have the total (conserved) energy being the sum of the kinetic and potential energy.

As for your example. I guess you think about the Coulomb field. You know that
$$\vec{E}(\vec{x})=\frac{q}{4 \pi r^3} \vec{x} \quad \text{with} \quad r=|\vec{x}|.$$
To get the potential, simply use the definition and think a bit about symmetries. Since the charge ##q## is sitting at the origin everything is symmetric under rotations around the origin. Thus it makes sense to try the ansatz that the potential depends only on ##r=|\vec{x}|##. Then you have
$$\vec{E}=-\vec{\nabla} \Phi(r)=-\frac{\vec{x}}{r} \Phi'(r).$$
Comparing the Coulomb law you see that
$$\Phi'(r)=-\frac{q}{4 \pi r^2} \; \Rightarrow \; \Phi(r)=\frac{q}{4 \pi r}.$$
I've chosen the arbitrary additive constant such that ##\Phi(r) \rightarrow 0## for ##r \rightarrow \infty## which is usually the most convenient choice.

Physicswise the sign is also clear. For a test charge ##q'## the potential energy is ##U=q' \Phi(r)##, which is the work to be done to bring the test charge at the position ##\vec{x}## from infinity. If ##q'>0## and ##q>0## the Coulomb force is repulsive and you need to do work against this repulsive force to bring the test charge from infinity to a place with distance ##r## from the charge ##q##, i.e., you put energy into the system, and that's why this energy must be positive, which is indeed the case ##U=q q'/(4 \pi r)##. If ##q q'<0## the Coulomb force is attractive and you have to take energy out of the system, which is why in this case ##U## is negative.
 
  • Like
Likes torito_verdejo
torito_verdejo said:
Summary:: Given the potential ##V(\textbf{r})=-\int_\infty^r \textbf{E}\cdot d\textbf{l}##, and given that ##\textbf{E}## is antiparallel to ##d\textbf{l}##, should I evaluate the positive integral ##V(\textbf{r})=\int_\infty^r E\ dr##?

The final result will only differ in its sign, but this is crucial. Having a positively, radially oriented electric field ##\textbf{E}##, I understand that the sign of the integral should be positive (## - (- A) = A##), but it is not! How and why is this the case? A line integral where the vector field is antiparallel to the displacement vector should be negative; is this negativity already taken into account by the conventional minus sign in ##V(\textbf{r})=-\int_\Lambda \textbf{E}\cdot d\textbf{l}##?

Thank you very much.

##d\vec l## is defined by the direction you are moving. Let's forget about coordinates for a moment:

If ##\vec E## is radially outward and ##d \vec l## is radially inward, then the inner product is negative. The integral itself must be negative (and the potential difference must be postive).

If we use ##r## as a coordinate and integrate from ##0## to ##\infty##, then we get a positive integral, which is not right. But, if we integrate from ##\infty## to ##0##, then by the properties of the integral this gives us a negative integral, as we expect.

In summary:

##\int_{\infty}^{P} \vec E \cdot \vec dl = \int_{\infty}^{r_0} E dr = - \int_{r_0}^{\infty} E dr##

Where ##P## is a point at radius ##r_0##.

In summary, havng the bounds on ##r## go from ##\infty## to ##0## already factors in the negative sign. Alternatively, you can have ##r## go in its "normal" direction, from ##0## to ##\infty##, then then you do need to have a negative factor because that is antiparallel to the direction of your line element.
 
  • Like
Likes torito_verdejo
vanhees71 said:
It's a convention that conservative fields' potentials are defined with the - sign. It comes from classical mechanics, where you like to have the total (conserved) energy being the sum of the kinetic and potential energy.

As for your example. I guess you think about the Coulomb field. You know that
$$\vec{E}(\vec{x})=\frac{q}{4 \pi r^3} \vec{x} \quad \text{with} \quad r=|\vec{x}|.$$
To get the potential, simply use the definition and think a bit about symmetries. Since the charge ##q## is sitting at the origin everything is symmetric under rotations around the origin. Thus it makes sense to try the ansatz that the potential depends only on ##r=|\vec{x}|##. Then you have
$$\vec{E}=-\vec{\nabla} \Phi(r)=-\frac{\vec{x}}{r} \Phi'(r).$$
Comparing the Coulomb law you see that
$$\Phi'(r)=-\frac{q}{4 \pi r^2} \; \Rightarrow \; \Phi(r)=\frac{q}{4 \pi r}.$$
I've chosen the arbitrary additive constant such that ##\Phi(r) \rightarrow 0## for ##r \rightarrow \infty## which is usually the most convenient choice.

Physicswise the sign is also clear. For a test charge ##q'## the potential energy is ##U=q' \Phi(r)##, which is the work to be done to bring the test charge at the position ##\vec{x}## from infinity. If ##q'>0## and ##q>0## the Coulomb force is repulsive and you need to do work against this repulsive force to bring the test charge from infinity to a place with distance ##r## from the charge ##q##, i.e., you put energy into the system, and that's why this energy must be positive, which is indeed the case ##U=q q'/(4 \pi r)##. If ##q q'<0## the Coulomb force is attractive and you have to take energy out of the system, which is why in this case ##U## is negative.
Thank you for the detailed explanation. :)
 
PeroK said:
##d\vec l## is defined by the direction you are moving. Let's forget about coordinates for a moment:

If ##\vec E## is radially outward and ##d \vec l## is radially inward, then the inner product is negative. The integral itself must be negative (and the potential difference must be postive).

If we use ##r## as a coordinate and integrate from ##0## to ##\infty##, then we get a positive integral, which is not right. But, if we integrate from ##\infty## to ##0##, then by the properties of the integral this gives us a negative integral, as we expect.

In summary:

##\int_{\infty}^{P} \vec E \cdot \vec dl = \int_{\infty}^{r_0} E dr = - \int_{r_0}^{\infty} E dr##

Where ##P## is a point at radius ##r_0##.

In summary, havng the bounds on ##r## go from ##\infty## to ##0## already factors in the negative sign. Alternatively, you can have ##r## go in its "normal" direction, from ##0## to ##\infty##, then then you do need to have a negative factor because that is antiparallel to the direction of your line element.
Thank you, this solved my doubt.
 
  • Like
Likes PeroK
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top